Effect of Thermohydrogen Treatment on the Manufacturing and Mechanical Properties of a Heat-Resistant VTI-4 Intermetallic Alloy

  • 1 Accesses


The effect of additional alloying of a Ti2AlNb-based VTI-4 alloy with hydrogen on the structure, the phase composition, and the manufacturing and mechanical properties of the alloy is studied. Hydrogenating annealing is found to favor the formation of a single-phase O structure at room temperature and to increase the deformability of the alloy. The mechanical properties of the alloy subjected to thermohydrogen treatment under different conditions are shown to be comparable with those reached by traditional annealing.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    V. V. Antipov, “Development strategy of titanium, magnesium, beryllium, and aluminum alloys”, Aviats. Mater. Tehkn., No. S, 157–167 (2012).

  2. 2

    E. N. Kablov, “Innovative developments of the FSUE VIAM SSC RF for the realization of strategic directions in developing materials and their processing technologies up to 2030,” Aviats. Mater. Tehkn., No. S, 7–17 (2012).

  3. 3

    I. S. Pol’kin, O. N. Grebenyuk, and V. S. Salenkov, “Titanium-based intermetallics”, Tekhn. Legkikh Splavov, No. 2, 5–15 (2010).

  4. 4

    J. Kumpfert, “Intermetallic alloys based on orthorhombic titanium aluminide,” Adv. Eng. Mater. 3 (11), 851–864 (2001).

  5. 5

    V. Imayev, T. Oleneva, R. Imaev, H.-J. Christ, and H.‑J. Fecht, “Microstructure and mechanical properties of low and heavy alloyed γ-TiAl + α2-Ti3Al based alloys subjected to different treatments,” Intermetallics 26, 91–97 (2012).

  6. 6

    Y. T. Wu, C. T. Yang, and C. H. Koo, “The effect of Nb content on the superplasticity of Ti–25Al–xNb alloy,” Mater. Chem. Phys. 73 (2–3), 212–219 (2002).

  7. 7

    S. Tian, Q. Wang, H. Yu, H. Sun, and Q. Li, “Microstructure and creep behaviors of a high Nb–TiAl intermetallic compound based alloy,” Mater. Sci. Eng. A 614, 338–346 (2014).

  8. 8

    B. A. Kolachev, A. A. Il’in, V. K. Nosov, and A. M. Mamonov, “Advances in hydrogen technology of titanium alloys,” Tekhn. Legkikh Splavov, No. 3, 10–26 (2007).

  9. 9

    A. A. Il’in, B. A. Kolachev, V. K. Nosov, and A. M. Mamonov, Hydrogen Technology of Titanium Alloys (MISiS, Moscow, 2002).

  10. 10

    M. Yu. Kollerov, A. V. Ovchinnikov, M. B. Afonina, V. S. Mamaev, and A. A. Levochkon, “Effect of hydrogen on the plastic deformation mechanism of industrial (α + β) titanium alloys,” Titan, No. 3, 22–27 (2012).

  11. 11

    M. Sh. Gadel’shin, L. I. Anisimova, and E. S. Boitsova, “Hydrogen plasticization of titanium alloys,” Mezhdun. Nauchn. Zh. Al’tern. Energ. Ekolog. 17 (9), 26–29 (2004).

  12. 12

    O. N. Senkov and F. H. Froes, “Thermohydrogen processing of titanium alloys”, Int. J. Hyd. Energy, No. 24, 565–576 (1999).

  13. 13

    O. N. Senkov, F. H. Froes, and J. I. Qazi, “Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing,” Int. Mater. Rev. 49 (3–4), 227–245 (2004).

  14. 14

    N. A. Nochovnaya, S. V. Skvortsova, D. S. Anishchuk, E. B. Alekseev, P. V. Panin, and O. Z. Umarova, “Elaboration of technology for experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 4, 24–29 (2013).

  15. 15

    E. B. Alekseev, N. A. Nochovnaya, S. V. Skvortsova, P. V. Panin, and O. Z. Umarova, “Determination of technology parameters of deformation of experimental heat-resistant alloy based on Ti2AlNb intermetallic,” Titan, No. 2, 34–39 (2014).

  16. 16

    A. A. Shiryaev and N. A. Nochovnaya, “Study of the structure and chemical composition of ingots of experimental high-alloyed titanium alloy,” Trudy VIAM, No. 9 (2015).

  17. 17

    Z. Yang, H. Kou, F. Zhang, X. Xue, J. Li, and L. Zhou, “The effect of VAR process parameters on beta flecks formation in Ti–10V–2Fe–3Al,” in Proceedings of 12th World Conference on Titanium Ti-2011, Beijing (Science Press, Beijing, 2012), Vol. 1, pp. 601–604.

  18. 18

    A. A. Orlov, A. E. Ivanov, and E. A. Kasymova, “Effect of heating temperature before hardening for changing the phase composition and structure of the VTI-4 alloy additionally alloyed with hydrogen,” in Gagarin Readings-2018, XLIV MMNK (MAI, Moscow, 2018), Vol. 3, pp. 347–348.

  19. 19

    P. I. Polukhin, S. S. Gorelik, and V. K. Vorontsov, Physical Foundations of Plastic Deformation (Metallurgiya, Moscow, 1982).

  20. 20

    V. A. Livanov, A. A. Bukhanova, and B. A. Kolachev, Hydrogen in Titanium (Metallurgiya, Moscow, 1962).

  21. 21

    B. A. Kolachev, Hydrogen Brittleness of Metals (Metallurgiya, Moscow, 1985).

  22. 22

    O. P. Solonina and S. G. Glazunov, Titanium Alloys. Heat-Resistant Titanium Alloys (Metallurgiya, Moscow, 1976).

Download references


The studies were performed using the equipment available in the Collective Usage Center for Aviation and Space Materials and Technologies at the Moscow Aviation Institute.

Author information

Correspondence to O. Z. Pozhoga.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skvortsova, S.V., Pozhoga, O.Z., Ovchinnikov, A.V. et al. Effect of Thermohydrogen Treatment on the Manufacturing and Mechanical Properties of a Heat-Resistant VTI-4 Intermetallic Alloy. Russ. Metall. 2019, 986–993 (2019).

Download citation


  • Ti2AlNb titanium intermetallics
  • ortho phase
  • O phase
  • thermohydrogen treatment
  • VTI-4 alloy
  • manufacturability
  • mechanical properties