Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1051–1056 | Cite as

Effect of the Fractionality and Direction of Severe Plastic Deformation on the Structure and Properties of Commercial-Purity Titanium

  • N. A. ShuryginaEmail author
  • A. M. Glezer
  • D. L. D’yakonov
  • A. D. Medvedeva
  • A. A. Tomchuk
  • T. V. Rassadina


The effect of the fraction and the direction of deformation on the structure and the hardness of commercial-purity titanium severely deformed in a Bridgman cell at room temperature is studied. The direction of rotation of a movable anvil considerably affects the conditions under which the ω phase precipitates and the structural parameters of dynamically recrystallized grains and deformation-induced fragments formed upon severe plastic deformation.


severe plastic deformation titanium microhardness transmission electron microscopy high-pressure torsion fractional deformation 



This work was supported in part by the Russian Foundation for Basic Research (project no. 18-08-00640a) and the Ministry of Education and Science of the Russian Federation (project no. 2017/113 (2097)).


  1. 1.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).Google Scholar
  2. 2.
    V. V. Rybin, Severe Plastic Deformation and Fracture of Metals (Metallurgiya, Moscow, 1986).Google Scholar
  3. 3.
    V. A. Pozdnyakov and A. M. Glezer, “Possible evolution of a defect structure during severe plastic deformations: the role of relaxation mechanisms,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68 (10) 1449–1455 (2004).Google Scholar
  4. 4.
    E. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: a wealth of challenging science,” Acta Mater. 61 (3) 782–817 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Beygelzimer, “Grain refinement versus voids accumulation during severe plastic deformation of polycrystals: mathematical simulation,” Mech. Mater. 37, 753–767 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. Todaka, J. Sasaki, T. Moto, and M. Umemoto, “Bulk submicrocrystalline ω-Ti produced by high-pressure torsion straining,” Scr. Mater. 59 (6), 615–618 (2008).CrossRefGoogle Scholar
  7. 7.
    A. P. Zhilyaev, F. Galvez, A. Sharafutdinov, and M. T. Perez-Prado, “Influence of the high pressure torsion die geometry on the allotropic phase transformations in pure Zr,” Mater. Sci. Eng. A 527 (16–17), 3918–3928 (2010).CrossRefGoogle Scholar
  8. 8.
    Zhang J., Zhao Y., Pantea C., Qian J., J. Zhang, Y. Zhao, C. Pantea, J. Qian, L. L. Daemen, P. A. Rigg, R. S. Hixson, and C. W. Greeff, “Experimental constraints on the phase diagram of elemental zirconium,” Phys. Chem. Solids 66 (7), 1213–1219 (2005).CrossRefGoogle Scholar
  9. 9.
    J. C. Jamieson, “Crystal structures of titanium, zirconium, and hafnium at high pressures,” Science 140, 72–80 (1963).CrossRefGoogle Scholar
  10. 10.
    M. Tane, Y. Okuda, Y. Todaka, H. Ogi, and A. Nagakubo, “Elastic properties of single-crystalline ω phase in titanium,” Acta Materialia 61 (20), 7543–7554 (2013).CrossRefGoogle Scholar
  11. 11.
    N. Adachi, Y. Todaka, H. Suzuki, and M. Umemoto, “Evolution of deformation texture of high-pressure ω‑phases in pure Ti and Zr during high-pressure torsion straining,” Mater. Sci. Eng. 82, 0120201–01202031 (2015).CrossRefGoogle Scholar
  12. 12.
    Yu. Ivanisenko, A. Kilmametov, H. Rusner, and R. Z. Valiev, “Evidence of α → ω phase transition in titanium after high pressure torsion,” Int. J. Mater. Res. 99, 1–8 (2008).CrossRefGoogle Scholar
  13. 13.
    A. M. Glezer, A. A. Tomchuk, R. V. Sundeev, and M.V. Gorshenkov, “Two-phase model of the structure formed upon sever plastic deformation in α-Fe and FeNi alloy,” Mater. Lett. 161, 360–366 (2015).CrossRefGoogle Scholar
  14. 14.
    F. Z. Utyashev, Deformation Techniques for the Manufacturing and Processing of Ultrafine-Grained Materials (Gilem, Ufa, 2013).Google Scholar
  15. 15.
    N. A. Shurygina, A. O. Cheretaeva, A. M. Glezer, D. L. D’yakonov, I. V. Chshetinin, R. V. Sundeev, A. A. Tomchuk, and L. F. Muradimova, “Effect of the temperature of megaplastic deformation in a Bridgman chamber on the formation of structures and the physicochemical properties of titanium (VT1-0),” Bull. Rus. Acad. Nauk: Fiz. 82 (9), 1113–1124 (2018).CrossRefGoogle Scholar
  16. 16.
    A. M. Glezer, A. A. Tomchuk, and T. V. Rassadina, “Effect of reversible torsion on the structure and mechanical properties of iron under severe plastic deformations in a Bridgman camera,” Dokl. Phys. 61 (2), 61–63 (2016).CrossRefGoogle Scholar
  17. 17.
    A. M. Glezer and L. S. Metlov, “Physics of megaplastic (severe) deformation in solids,” Phys. Solid State 52 (6), 1162–1169 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Shurygina
    • 1
    Email author
  • A. M. Glezer
    • 2
  • D. L. D’yakonov
    • 1
  • A. D. Medvedeva
    • 3
  • A. A. Tomchuk
    • 1
    • 4
  • T. V. Rassadina
    • 3
  1. 1.Bardin Central Research Institute of Non-Ferrous MetallurgyMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia
  3. 3.Russian Technological University MIREAMoscowRussia
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations