Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 943–947 | Cite as

Evolution of the Multiscale Hierarchical Structure of Defects in a Melt-Quenched Fe70Cr15B15(Sn) Alloy during Low-Temperature Annealing

  • T. A. PisarenkoEmail author
  • A. M. Frolov
  • G. S. Krainova
PHYSICAL FOUNDATIONS OF STRENGTH AND PLASTICITY
  • 3 Downloads

Abstract—The evolution of the multiscale hierarchical structure of an amorphous melt-quenched Fe70Cr15B15(Sn) alloy with a low tin content is studied. The fractal ordering of the alloy ribbon surface indicates the presence of localized structural states, which are large-scale recrystallization centers. The tin microalloying of the ribbon contact surface changes the topology of the localized states, which leads to a change in the scenario of transformations and to a decrease in the phase-transformation temperature. The character of structural ordering is reflected on the shape of fractal dimension spectra. The fractal dimension is reduced at the stages of vitrification and nanocrystallization.

Keywords: amorphous melt-quenched alloy microalloying fast Fourier transform fractal dimension topological thermodynamics 

Notes

ACKNOWLEDGMENTS

We thank Prof. A.M. Glezer (Bardin Central Research Institute of Ferrous Metallurgy) for supplying the samples, B.N. Grudin and V.S. Plotnikov (Electron Microscopy Laboratory, Far East Federal University), and A.V. Gerasimenko (Institute of Chemistry, Far East Branch, Russian Academy of Sciences) for performing the experiments.

REFERENCES

  1. 1.
    G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).Google Scholar
  2. 2.
    Y. Yoshizawa, S. Oguma, and K. Yamauchi, “New Fe-based soft magnetic alloys composed of ultrafine grain structure,” J. Appl. Phys. 64, 6044–6046 (1988).CrossRefGoogle Scholar
  3. 3.
    H. K. Lachowicz and A. Slawska-Waniewska, “Coexistence of various magnetic phases in nanocrystalline Fe-based metallic glasses,” J. Magn. Magn. Mater. 133, 238–242 (1994).CrossRefGoogle Scholar
  4. 4.
    P. Marin, M. Lopez, A. Hernando, Y. Iqbal, H. A. Davies, and M. R. J. Gibbs, “Influence of Cr additions in magnetic properties and crystallization process of amorphous iron based alloys,” J. Appl. Phys. 92, 374–378 (2002).CrossRefGoogle Scholar
  5. 5.
    J. Torrents-Serra, J. Rodriguez-Viejo, and M. T. Clavaguera-Mora, “Nanocrystallization kinetics and glass forming ability of the Fe65Nb10B25 metallic alloy,” Phys. Rev. B: Condens. Matter 76, 214111–214123 (2007).Google Scholar
  6. 6.
    G. Herzer, “Modern soft magnets: amorphous and nanocrystalline materials,” Acta Mater. 61, 718–734 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Schroeder, Fractals, Chaos, Power Laws (Freeman, New York, 1991).Google Scholar
  8. 8.
    J. Feder, Fractals (Plenum, New York, 1988).CrossRefGoogle Scholar
  9. 9.
    V. S. Ivvanova, A. S. Balankin, I. Zh. Bunin, and A. A. Oksogoev, Synergetics and Fractals in Materials Science (Nauka, Moscow, 1994).Google Scholar
  10. 10.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).Google Scholar
  11. 11.
    G. S. Kraynova, A. M. Frolov, and T. A. Pisarenko, “Fractal ordering nanostructured planar media,” Adv. Mater. Res. 718–720, 85–90 (2013).CrossRefGoogle Scholar
  12. 12.
    H. G. E. Hentschel and I. Procaccia, “Relative diffusion in turbulent media: the fractal dimension of clouds,” Phys. Rev. A 29, 1461–1470 (1984).CrossRefGoogle Scholar
  13. 13.
    B. N. Grudin and V. S. Plotnikov, Processing and Simulation of Microscopic Images (Dal’nauka, Vladivostok, 2010).Google Scholar
  14. 14.
    N. I. Chukhrii, V. V. Yudin, A. M. Frolov, and L. A. Yudina, “Corelation between the structure and morphology of melt-quenched ribbons and atomic disordering in spinning processes,” Poverkhnost, No. 4, 56–65 (1999).Google Scholar
  15. 15.
    G. S. Krainova, V. I. Nevmerzhitsky, A. M. Frolov, T. A. Pisarenko, and V. V. Yudin, “Effect of structural relaxation processes on the structure and magnetic and electrical properties of iron-based melt-spun ribbons,” Bull. Russ. Acad. Sci., Phys. 74 (5), 714–716 (2010).CrossRefGoogle Scholar
  16. 16.
    J. C. Phillips, “Glass physics,” Phys. Today 2, 27–54 (1982).Google Scholar
  17. 17.
    Yu. L. Klimontovich, Introduction to the Physics of Open Systems (Yanus-K, Moscow, 2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. A. Pisarenko
    • 1
    • 2
    Email author
  • A. M. Frolov
    • 1
  • G. S. Krainova
    • 1
  1. 1.Far East Federal UniversityVladivostokRussia
  2. 2.Institute of Automation and Control ProcessesVladivostokRussia

Personalised recommendations