Advertisement

Cross Hardening of a Shape Memory Alloy during Compression

  • 5 Accesses

Abstract—The influence of the preliminary direct martensitic transformation in titanium nickelide under a constant compressive stress on the diagrams of subsequent loading under martensitic inelasticity at a monotonically increasing compressive stress is experimentally studied. These diagrams are found to reach the martensitic inelasticity diagram corresponding to the compression of initially fully twinned martensite when the stress increases. The cross hardening on compression is shown to be more intense than that on tension. The phase-structural strain deviator can be considered as a state parameter for a shape memory alloy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    M. Elahinia, N. S. Moghaddam, A. Amerinatanzi, S. Saedi, G. P. Toker, H. Karaca, G. S. Bigelow, and O. Benafan, “Additive manufacturing of NiTiHf high temperature shape memory alloy,” Scr. Mater. 145, 90–94 (2018).

  2. 2

    O. Benafan, A. Garg, R. D. Noebe, G. S. Bigelowa, S. A. Padula, D. J. Gaydosh, N. Schell, J. H. Mabe, and R. Vaidyanathan, “Mechanical and functional behavior of a Ni-rich Ni50.3Ti29.7Hf20 high temperature shape memory alloy,” Intermetallics 50, 94–107 (2014).

  3. 3

    P. Sittner and V. Novak, “Anisotropy of Cu-based shape memory alloys in tension/compression thermomechanical loads,” Trans. ASME. J. Eng. Mater. Techn. 121 (1), 48–55 (1999).

  4. 4

    J. Sam, B. Franco, J. Ma, I. Karaman, A. Elwany, and J. H. Mabe, “Tensile actuation response of additively manufactured nickel–titanium shape memory alloys,” Scr. Mater. 146, 164–168 (2018).

  5. 5

    O. Benafan, D. J. Gaydosh, R. D. Noebe, S. Qiu, and R. Vaidyanathan, “In situ neutron diffraction study of NiTi–21Pt high-temperature shape memory alloys,” Shape Memory and Superelasticity 2, 337–346 (2016).

  6. 6

    N. Zou, Z. Li, B. Yang, X. Zhao, L. Zuo, Y. Zhang, and C. Esling, “Plastic deformation of Ni–Mn–Ga 7M modulated martensite by twinning & detwinning and intermartensitic transformation,” Int. J. Plasticity 10, 1–13 (2018).

  7. 7

    Y. Qiu, M. L. Young, and X. Nie, “High strain rate compression of martensitic NiTi shape memory alloy at different temperatures,” Metall. Mater. Transactions, A 48 (2), 601–608 (2017).

  8. 8

    Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, “Some result of the detwinning process in TiNi shape memory alloys,” Scr. Mater. 41 (12), 1273–1281 (1999).

  9. 9

    A. A. Movchan, S. A. Kazarina, and T. Z. Aung, “Analog of the plasticity theory for describing the deformation of shape memory alloys during phase and structural transformations,” Deform. Razrushenie Mater., No. 9, 2–6 (2009).

  10. 10

    S. A. Kazarina, A. A. Movchan, and A. L. Sil’chenko, “Experimental study of the interaction of the phase and structural deformations in shape memory alloys,” Mekhan. Komposit. Mater. Konstr. 22 (1), 85–98 (2016).

  11. 11

    A. A. Movchan, A. L. Sil’chenko, and S. A. Kazarina, “Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys,” Deform. Razrushenie Mater., No. 3, 20–27 (2017).

  12. 12

    T. Baxevanis, A. F. Parrinello, and D. C. Lagoudas, “On the driving force for crack growth during thermal actuation of shape memory alloys,” J. Mechan. Phys. Solids 89, 255–271 (2016).

  13. 13

    S. Jape, T. Baxevanis, ad D. C. Lagoudas, “On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity,” Int. J. Fract. 209 (1), 117–130 (2018).

  14. 14

    E. V. Lomakin, “Mechanics of media with properties dependent on the type of state of stress,” Fiz. Mezomechan. 10, 41–52 (2007).

  15. 15

    E. V. Lomakin, “Constitutive models of mechanical behavior of media with stress state dependent material properties,” Adv. Struct. Mater. 7, 339–350 (2011).

  16. 16

    K. Gall, H. Sechitoglu, Y. I. Chumlyakov, and I. V. Kireeva, “Tension–compression asymmetry of the stress–strains response in aged single crystal and polycristalline TiNi,” Acta Mater. 47 (4), 1203–1217 (1999).

  17. 17

    A. A. Movchan, S. A. Kazarina, and A. L. Sil’chenko, “Martensitic inelasticity diagrams of titanium nickelide during tension, compression, and compression after tension,” Mekhan. Komposit. Mater. Konstr. 21 (1), 83–93 (2015).

  18. 18

    A. A. Movchan, S. A. Kazarina, and A. L. Sil’chenko, “Experimental identification of a model of nonlinear deformation of shape memory alloys during phase and structural transformations,” Deform. Razrushenie Mater., No. 12, 2–11 (2018).

  19. 19

    L. Orgeas and D. Favier, “Stress-induced martensite transformation of a NiTi alloy in isothermal shear, tension and compression,” Acta Mater. 46, 5579–5591 (1998).

  20. 20

    T. J. Lim and D. L. McDowell, “Mechanical behavior of an Ni–Ti shape memory alloy under axial–torsional proportional and nonproportional loading,” J. Eng. Mater. Techn. 121 (1), 9–18 (1999).

  21. 21

    A. A. Movchan, S. A. Kazarina, and T. Z. Aung, “Rheonomic properties of shape memory alloys during martensitic inelasticity and superelasticity experiments,” Mekhan. Komposit. Mater. Konstr. 16 (3), 305–311 (2010).

  22. 22

    A. A. Movchan, S. A. Kazarina, and A. L. Sil’chenko, “Effect of the type of state of stress on the stress relaxation in titanium nickelide,” Deform. Razrushenie Mater., No. 10, 10–16 (2017).

  23. 23

    Ch. Lexcellent, M. L. Boubakar, Ch. Bouvet, and S. Calloch, “About modelling the shape memory alloy behaviour based on the phase transformation surface identification under proportional loading and anisothermal conditions,” Int. J. Solids and Structures 43, 613–626 (2006).

  24. 24

    Y Liu, Z. L. Xie, J. Van Humbeeck, and L. Delaey, “Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys,” Acta Mater. 46 (12), 4325–4338 (1998).

  25. 25

    K. A. Tikhomirova, “Development and numerical implementation of a one-dimensional phenomenological model for the phase deformation in shape memory alloys,” Vychisl. Mekh. Sploshn. Sred 9 (2), 192–206 (2016).

  26. 26

    K. A. Tikhomirova, “Isothermal deformation of a shape memory alloy in various temperature ranges. Uniaxial tension,” Mekhan. Komposit. Mater. Konstr. 23 (2), 263–282 (2017).

  27. 27

    K. A. Tikhomirova, “Experimental and theoretical investigation of the relation between the phase and structural strains in shape memory alloys,” Vestn. PNIPU. Mekhan., No. 1, 40–57 (2018).

  28. 28

    L. S. Brinson, “One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable,” J. Intell. Mater. Syst. Str. 4, 229–242 (1993).

  29. 29

    L. S. Brinson and M. S. Huang, “Simplification and comparisons of shape memory alloys constitutive models,” J. Intell. Mater. Syst. Str. 7, 108–114 (1996).

  30. 30

    L. Juhász, H. Andrä, and O. A. Hesebeck, “Constitutive model of shape memory alloys based on viscoplastic like evolution equations,” Per. Polyt. Mechan. Eng. 44 (1), 59–69 (2000).

  31. 31

    B. Gabry, C. Lexcellent, V. H. No, and S. Miyazaki, “Thermodynamic modeling of the recovery strains of sputter-deposited shape memory alloys Ti–Ni and Ti–Ni–Cu thin films,” Thin Solid Films 372, 118–133 (2000).

  32. 32

    J. Arghavani, F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour, “A 3-D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation,” Cont. Mech. Thermod. 25, 345–362 (2010).

  33. 33

    M. Huang and L. C. Brinson, “A multivariant model for single crystal shape memory alloy behavior,” J. Mechan. Phys. Solids 46 (8), 1379–1409 (1998).

  34. 34

    A. A. Movchan, S. A. Kazarina, I. V. Mishustin, and I. A. Movchan, “Thermodynamic substantiation of a model for the nonlinear deformation of shape memory alloys during phase and structural transformations,” Deform. Razrushenie Mater., No. 8, 2–9 (2009).

  35. 35

    A. A. Movchan and N. So, “Thermodynamic description of the behavior of shape memory alloys using an additive Gibbs potential,” Prikl. Mekh. Tekhn. Fiz. 47 (4(278)), 98–103 (2006).

  36. 36

    A. A. Movchan and I. A. Movchan, “One-dimensional micromechanical model of the nonlinear deformation of a shape memory alloy during the direct and reverse thermoelastic transformations,” Mekhan. Komposit. Mater. Konstr. 13 (3), 297–322 (2007).

  37. 37

    I. V. Mishustin and A. A. Movchan, “Analog of the theory of plasticity for the description of the martensite anelasticity deformation in shape memory alloys,” Izv. Ross. Akad. Nauk, Mekhan. Tverd. Tela, No. 2, 78–95 (2015).

  38. 38

    I. V. Mishustin, “Model for the deformation of a shape memory alloy with allowance for different resistances,” Mekhan. Komposit. Mater. Konstr. 23 (4), 484–498 (2017).

  39. 39

    I. V. Mishustin, “Nanostructural model of shape memory alloy with resistance asymmetry behavior,” Nanomechan. Sci. Techn. 9 (2), 165–181 (2018).

Download references

Author information

Correspondence to A. A. Movchan.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Movchan, A.A., Kazarina, S.A. & Sil’chenko, A.L. Cross Hardening of a Shape Memory Alloy during Compression. Russ. Metall. 2019, 967–973 (2019) doi:10.1134/S0036029519100185

Download citation

  • Keywords: shape memory alloys
  • cross hardening
  • compression
  • direct transformation
  • martensitic inelasticity
  • phase-structural strain