Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1002–1008 | Cite as

Fabrication, Structure, and Mechanical Properties of Composite Oxide Fibers for Brittle-Matrix Composites

  • V. M. KiikoEmail author
  • A. A. Kolchin
  • N. I. Novokhatskaya
ADVANCED MATERIALS AND TECHNOLOGIES

Abstract—Composite fibers of starting mixtures of aluminum, yttrium, and calcium oxides and fibrous composite materials consisting of these fibers and a molybdenum matrix are fabricated by internal crystallization. The structure, the strength, and the cracking resistance of the fibers are studied in the temperature range 20–1400°C. Inductile components are shown to be used to form composite materials with quasi-plastic behavior, and their cracking resistance can be 20–25 MPa m1/2.

Keywords: brittle-matrix composites oxide fibers structure strength cracking resistance effective surface energy 

Notes

ACKNOWLEDGMENTS

We thank S.T. Mileiko for helpful discussions and S.A. Abashkin, A.Ya. Mitskevich, N.A. Prokopenko, and V.A. Chumichev for their help in performing the experiments.

FUNDING

This work was performed according to state assignment 0032-2017-002 and was supported by the Russian Foundation for Basic Research, project no. 17-03-01136.

REFERENCES

  1. 1.
    J. Cook and J. E. J., Gordon, “A mechanism for the control of crack propagation in all-brittle systems,” Proc. Royal Soc. A 282 (8), 508–520 (1964).Google Scholar
  2. 2.
    N. A. Popova and A. N. Tolstun, “Formation of a monazite layer in the structure of oxide–oxide composites based on MVK fibers,” Nauka Proizv. 95 (2), 58–61 (2007).Google Scholar
  3. 3.
    M. K. Cinibulk, “Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility,” J. Eur. Ceram. Soc. 20, 569–582 (2000).CrossRefGoogle Scholar
  4. 4.
    S. T. Mileiko and V. I. Kaz’min, “Fabrication of composites by internal crystallization,” Mekhan. Komposit. Mater., No. 5, 898–908 (1991).Google Scholar
  5. 5.
    Phase Equilibria Diagrams. ACerS–NIST. Version 3. CD-ROM Database (2003).Google Scholar
  6. 6.
    V. M. Kiiko and S. T. Mileiko, “Evaluation of room temperature strength of oxide fibres produced by the internal crystallization method,” Comp. Sci. Techn. 59, 1977–1981 (1999).CrossRefGoogle Scholar
  7. 7.
    M. N. Ruditsin, P. Ya. Artemov, and M. I. Lyuboshits, Handbook of the Strength of Materials (Vysheishaya Shkola, Minsk, 1970).Google Scholar
  8. 8.
    D. Broek, Foundations of Fracture Mechanics (Vysshaya Shkola, Moscow, 1980).Google Scholar
  9. 9.
    V. M. Kiiko, “Estimation of the effective surface energy of a material in bending,” in Proceedings of IX International Conference on Phase Transformations and Strength of Crystals (Chernogolovka, 2016), p. 156.Google Scholar
  10. 10.
    S. Mileiko, A. Kolchin, V. Kiiko, and N. Novokhatskaya, “Composite oxide fibres grown by internal crystallization method,” Fibers 5 (4), art. 48 (2017).CrossRefGoogle Scholar
  11. 11.
    S. A. Kelli, Ultrahigh-Strength Materials (Mir, Moscow, 1973).Google Scholar
  12. 12.
    S. T. Mileiko, V. N. Kurlov, A. A. Kolchin, and V. M. Kiiko, “Fabrication, properties and usage of single-crystalline YAG fibers,” J. Eur. Ceram. Soc. 22, 1831–1837 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Kiiko
    • 1
    Email author
  • A. A. Kolchin
    • 1
  • N. I. Novokhatskaya
    • 1
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations