Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1018–1023 | Cite as

Structure and High-Temperature Mechanical Properties of High-Carbon Niobium-Based Alloys

  • M. I. Karpov
  • D. V. ProkhorovEmail author
  • V. I. Vnukov
  • T. S. Stroganova
  • B. A. Gnesin
  • I. B. Gnesin
  • I. S. Zheltyakova
  • I. L. Svetlov
ADVANCED MATERIALS AND TECHNOLOGIES

Abstract—The structure and the mechanical properties of Nb80C20 and Nb40Mo40C20 alloys have been studied at temperatures 20–1500°C. The mechanical properties of the Nb80C20 alloy from room temperature to 1300°C are shown to be slightly lower than those of complex Nb–Si alloys. The short-time and 100-h strengths of the Nb40Mo40C20 alloy at 1500°C are higher than those of Nb–Si alloys. The Nb40Mo40C20 alloys have a low fracture toughness.

Keywords: Nb–C alloys high-temperature strength short-time mechanical properties creep 

Notes

FUNDING

This work was performed in the framework of state assignment to the Institute of Solid-State Physics of the Russian Academy of Sciences and the program “Nanostructures: Physics, Chemistry, Biology, and Fundamentals of Technologies” of the Presidium of Russian Academy of Sciences.

REFERENCES

  1. 1.
    M. I. Karpov, “Niobium-base refractory alloys with silicide and carbide hardening: current status and prospects,” Metal Sci. Heat Treat. 60 (1, 2), 7–12 (2018).CrossRefGoogle Scholar
  2. 2.
    M. I. Karpov, V. I. Vnukov, V. P. Korzhov, T. S. Stroganova, I. S. Zheltyakova, D. V. Prokhorov, I. B. Gnesin, V. M. Kiiko, Yu. P. Kolobov, E. V. Golosov, and A. N. Nekrasov, “Structure and mechanical properties of the high-temperature eutectic Nb–Si alloy obtained by the directional solidification methods,” Deform. Razrushenie Mater., No. 12, 2–8 (2012).Google Scholar
  3. 3.
    I. L. Svetlov, M. I. Karpov, A. V. Neiman, and T. S. Stroganova, “Temperature dependence of the ultimate strength in-situ composites of a multi-component Nb–Si–X (X = Ti, Hf, W, Cr, Al, Mo) system,” Deform. Razrushenie Mater., No. 10, 17–22 (2017).Google Scholar
  4. 4.
    M. I. Karpov, V. P. Korzhov, T. S. Stroganova, I. S. Zheltyakova, D. V. Prokhorov, V. I. Vnukov, V. M.Kiiko, A. N. Tolstun, Yu. P. Kolobov, and E. V. Golosov, “Structure and properties of Nb–Si alloys fabricated by powder metallurgy methods,” Deform. Razrushenie Mater., No. 12, 5–8 (2011).Google Scholar
  5. 5.
    M. V. Pridantsev, V. K. Grigorovich, E. N. Sheftel’, “Aging of oxygen-alloyed niobium alloys,” Metalloved. Term. Obrab. Met., No. 4, 47–50 (1969).Google Scholar
  6. 6.
    M. V. Zakharov and A. M. Zakharov, Refractory Alloys (Metallurgiya, Moscow, 1972).Google Scholar
  7. 7.
    M. G. Grigorovich and E. N. Sheftel’, “Physicochemical basics of designing high-temperature niobium alloys,” Materialoved. Term. Obrab. Met., No. 7, 23–29 (1982).Google Scholar
  8. 8.
    M. G. Grigorovich and E. N. Sheftel’, Precipitation Hardening of High-Melting Metals (Nauka, Moscow, 1983).Google Scholar
  9. 9.
    O. A. Bannykh and E. N. Sheftel’, “Dispersion hardening by carbides in niobium-base alloys,” in Proceedings of The Metallurgical Society Fall Meeting (The Metallurg. Soc., Warrendale, 1991), pp. 73–82.Google Scholar
  10. 10.
    O. A. Bannykh and E. N. Sheftel’, “Niobium-base alloys,” J. Refract. Met. Hard Mater. 12 (5), 303–314 (1993–1994).Google Scholar
  11. 11.
    E. N. Sheftel’ and O. A. Bannykh, “Physicochemical and structural approaches to designing niobium-based structural alloys,” Rus. Met. (Metally), No. 5, 523–534 (2001).Google Scholar
  12. 12.
    A. D. Stan and D. B. Harold, “Banding in niobium–niobium carbide (Nb2C) composites grown by zone melting and freezing,” Metallurg. Trans. 5 (11), 2309–2316 (1974).Google Scholar
  13. 13.
    A. D. Stan and D. B. Harold, “Banding in niobium–niobium carbide (Nb2C) composites grown by zone melting and freezing,” Metallurg. Trans. 5 (12), 2608–2611 (1974).Google Scholar
  14. 14.
    E. N. Sheftel’, O. A. Bannykh, G. Sh. Usmanova, and E. V. Markova, “Effect of crystallization rate on the structure of alloys in the Nb–Zr–C system,” Met. Sci. Heat Treat. 31 (3), 271–277 (1989).Google Scholar
  15. 15.
    Y. Tan, C. L. Ma, A. Kasama, R. Tanaka, Y. Mishima, S. Hanada, and J.-M. Yang, “Effect of alloy composition on microstructure and high temperature properties of Nb–Zr–C ternary alloys,” Mater. Sci. Eng. A 341 (1, 2), 282–288 (2003).CrossRefGoogle Scholar
  16. 16.
    R. Ding, I. P. Jones, and H. Jiao, “Microstructures and mechanical properties of Nb-Ti-C alloys,” Mater. Sci. Eng. A 458 (1, 2), 126–135 (2007)Google Scholar
  17. 17.
    H. Jiao, I. P. Jones, and M. Aindow, “Microstructures and mechanical properties of Nb–Ti–C alloys,” Mater. Sci. Eng. A 485 (1, 2), 359–366 (2008).CrossRefGoogle Scholar
  18. 18.
    J. L. Pouchou and F. Pichoir, “A new model for quantitative X-ray microanalysis. I. Application to the analysis of homogeneous samples,” Recherche Aerospatiale 3, 13–38 (1984).Google Scholar
  19. 19.
    S. T. Mileiko, “Oxide–fibre/Ni-based matrix composites. III. A creep model and analysis of experimental data,” Composites Sci. Technol., No. 62, 195–204 (2002).CrossRefGoogle Scholar
  20. 20.
    S. T. Mileiko and V. M. Kiiko, “High-temperature creep of fibre composites with a metallic matrix at variable stresses,” Mekh. Compozit. Mater. 40 (4), 523–534 (2004).Google Scholar
  21. 21.
    D. Broek, Elementary Engineering Fracture Mechanics (Springer, Netherlands, 1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. I. Karpov
    • 1
    • 3
  • D. V. Prokhorov
    • 1
    Email author
  • V. I. Vnukov
    • 1
  • T. S. Stroganova
    • 1
  • B. A. Gnesin
    • 1
  • I. B. Gnesin
    • 1
  • I. S. Zheltyakova
    • 1
  • I. L. Svetlov
    • 2
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia
  2. 2.All-Russia Institute of Aviation Materials VIAMMoscowRussia
  3. 3.Togliatti State UniversityTogliattiRussia

Personalised recommendations