Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1143–1150 | Cite as

Causes and Mechanisms of Fracture of a Main Line Section Made of 17G1S Steel

  • V. M. Goritskii
  • G. R. ShneiderovEmail author
  • A. A. Durneva
DIAGNOSTICS AND MECHANICAL TEST TECHNIQUES
  • 1 Downloads

Abstract—The cause and the mechanism of formation of a long crack in a linear oil-trunk pipeline section consisting of two longitudinal pipes 1220 mm in diameter made of low-alloy 17G1S steel are comprehensively studied. The length of the crack moving along the longitudinal weld exceeds 3 m. The chemical composition and the mechanical properties of the pipe metal are found to meet the requirements of standards, and the impact toughness at negative temperatures is slightly lower than the standard. The crack moved according to a fatigue mechanism with a predominant grove relief. The main causes of crack nucleation are as follows: a significant stress concentration near the inner weld with distorted geometry of the reinforcing beads and a cyclic character of loading the oil pipeline.

Keywords: cracking low-alloy steel structure fatigue fracture impact toughness welded joint fractography oil-trunk pipeline 

Notes

REFERENCES

  1. 1.
    Yu. V. Lisin, D. A. Neganov, and A. A. Sergaev, “Determination of the allowable operating pressures for main lines operating for a long time from the results of intrapipe diagnostics,” Nauka Tekhnol. Truboprovod. Transporta Nefti Nefteprod. 26 (6), 30–37 (2016).Google Scholar
  2. 2.
    D. A. Neganov, S. N. Maslikov, A. A. Sergaev, and S. V. Ermish, “Application of intrapipe diagnostics data for calculating the bearing capacity of using a refined safety factor,” Neftyan. Khozyaistvo, No. 8, 130–133 (2017).Google Scholar
  3. 3.
    L. A. Sosnovskii, N. A. Makhutov, A. M. Bordovskii, and V. V. Vorob’ev, “Statistical estimation of the degradation of the properties of the material in linear sections of oil pipelines,” Zavod. Lab. 69 (11), 40–49 (2003).Google Scholar
  4. 4.
    N. A. Makhutov, V. N. Permyakov, Yu. A. Kravkova, and L. R. Botvina, “Estimation of the state of the gasoline line material after long-term operation,” Zavod. Lab. 73 (2), 54–59 (2007).Google Scholar
  5. 5.
    N. P. Lyakishev, M. M. Kantor, A. A. Belkin, and V. N. Timofeev, “Estimation of the influence of long-term operation on the mechanical properties and structure of the main line metal,” Zavod. Lab. 73 (1), 60–66 (2007).Google Scholar
  6. 6.
    K. M. Yamaleev and L. A. Abramenko, “Strain aging of pipe steels during the operation of oil-trunk pipelines,” Probl. Prochn., No. 11, 125–128 (1989).Google Scholar
  7. 7.
    A. G. Gumerov, R. S. Zainullin, K. M. Yamaleev, and A. V. Roslyakov, Aging of Oil Line Pipes (Nedra, Moscow, 1995).Google Scholar
  8. 8.
    R. Peterson, Stress Concentration Coefficients (Mir, Moscow, 1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. M. Goritskii
    • 1
  • G. R. Shneiderov
    • 1
    Email author
  • A. A. Durneva
    • 1
  1. 1.ZAO TsNIIPSK im. Mel’nikovaMoscowRussia

Personalised recommendations