Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 948–955 | Cite as

Simulation of the Grain Refinement in Metals during Superplastic Deformation

  • I. A. GoncharovEmail author
DEFORMATION AND FRACTURE MECHANICS
  • 1 Downloads

Abstract—An approach, which is based on modified phenomenological models of the rheological behavior of metallic materials under superplasticity conditions, is proposed to describe the grain size distribution during superplastic flow with allowance for grain refinement. The characteristic features of experimental grain size distributions are shown to be successfully simulated.

Keywords: simulation superplasticity microstructural evolution grain refinement recrystallization models 

Notes

REFERENCES

  1. 1.
    R. A. Vasin and F. U. Enikeev, Introduction to the Superplasticity Mechanics (Gilem, Ufa, 1998), Part 1.Google Scholar
  2. 2.
    T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics (Cambridge University Press, New York, 1997).CrossRefGoogle Scholar
  3. 3.
    O. I. Bylya and R. A. Vasin, “Deformation of alloys under superplasticity and similar conditions,” Izv. Tul’skogo Gos. Univ., Estestv. Nauki, No. 2, 116–128 (2011).Google Scholar
  4. 4.
    T.-W. Kim and F. P. E. Dunne, “Determination of superplastic constitutive equations and strain rate sensitivities for aerospace alloys,” Proc. Inst. Mechan. Eng., Part G: J. Aerospace Eng. 211 (6), 367–380 (1997).CrossRefGoogle Scholar
  5. 5.
    I. A. Goncharov and T. A. Belyakova, “Methods for estimating the accuracy and stability of the algorithm of determining superplasticity model parameters,” Vychisl. Mekhan. Sploshn. Sred 11 (1), 51–67 (2018).Google Scholar
  6. 6.
    T.-W. Kim and F. P. E. Dunne, “Modeling heterogeneous microstructures in superplasticity,” Proc. R. Soc. London, A 455, (1982), 701–718 (1999).CrossRefGoogle Scholar
  7. 7.
    O. I. Bylya, B. K. Pradhan, E. B. Yakushina, P. L. Blackwell, and R. A. Vasin, “Modeling of active transformation of microstructure of two-phase Ti alloys during hot working,” Letters on Mater. 4 (2), 124–129 (2014).CrossRefGoogle Scholar
  8. 8.
    A. K. Ghosh and R. Raj, “A model for the evolution of grain size distribution during superplastic deformation,” Acta Metall. 34 (3), 447–456 (1986).CrossRefGoogle Scholar
  9. 9.
    A. A. Sirenko, M. A. Murzinova, and F. U. Enikeev, “On the universal relationship between specific characteristics of superplastic deformation,” J. Mater. Sci. Letters 14, 773–774 (1995).CrossRefGoogle Scholar
  10. 10.
    O. I. Bylya, R. A. Vasin, and A. I. Pshenichnyuk, “An approach for modeling the active transformation of microstructure of two-phase alloys in FEM simulation of technological chains in superplastic forming (SPF),” Mater. Werkstofftechnik 45 (9), 799–806 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations