Advertisement

Russian Metallurgy (Metally)

, Volume 2019, Issue 10, pp 1045–1050 | Cite as

Effect of Severe Plastic Deformation on the Acoustic Emission and the Thermal Effects in Titanium Nickelide

  • N. N. Belousov
  • V. A. Andreev
  • E. V. ChernyaevaEmail author
  • A. E. Volkov
  • Yu. N. V’yunenko
STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • 1 Downloads

Abstract

Acoustic emission and differential scanning calorimetry have been used to study the structural changes and the thermal effects in a TiNi alloy after severe plastic deformation (SPD). The character and the thermal effect after SPD are shown to demonstrate partial amorphization of the alloy. The heat release observed upon the first heating after SPD in the temperature range 250–380°C corresponds to solidification. The number of detected acoustic emission signals from the TiNi alloy and their amplitudes are found to decrease after SPD.

Keywords:

severe plastic deformation (SPD) torsion under quasi-hydrostatic pressure acoustic emission martensitic transformation shape memory alloy differential scanning calorimetry 

Notes

ACKNOWLEDGMENTS

The authors are grateful to N.N. Resnina for her help in the calorimetric studies.

REFERENCES

  1. 1.
    A. I. Potekaev and V. A. Plotnikov, Acoustic Dissipation of Energy at Thermoelastic Martensitic Transformations (NTL, Tomsk, 2004).Google Scholar
  2. 2.
    V. A. Plotnikov, A. S. Gryaznov, and I. V. Kharlamov, “Acoustic emission and deformation at cycling of martensitic transformations of titanium-nickelide-based alloys under mechanical loading,” Vest. AltGTA. Estestv. Tochnye Nauki, No. 13, 18–23 (2012).Google Scholar
  3. 3.
    V. A. Plotnikov, A A. Kovalenko, D. V. Kokhanenko, and A. D. Nasonov, “Acoustic emission and anomalous behavior of elastic moduli at thermoelastic martensitic transformations,” Ul’trazvuk Termodin. Svoistva Veshch., No. 29, 31–34 (2003).Google Scholar
  4. 4.
    Yu. N. V’yunenko and E. V. Chernyaeva, “Effect of conditions of thermocycling of a TiNi alloy on the acoustic emission parameters, in Proceedings of XXII Petersburg Readings on the Strength Problems (Politekh Univer., St. Petersburg, 2016), pp. 387–389.Google Scholar
  5. 5.
    Yu. N. V’yunenko, V. V. Kozhushko, A. E. Volkov, and E. V. Chernyaeva, “Acoustic emission at the thermocycling of titanium nickelide at nonuniform heating,” Izv. Ross. Akad. Nauk. Ser. Phys. 81 (11), 1451–1457 (2017).Google Scholar
  6. 6.
    E. V. Chernyaeva, V. A. Andreev, and Yu. N. V’yunenko, “Radial distribution of physical properties in a titanium-nickelide rod after a warm forging,” Vestn. Tambov Univer., Ser. Estestv. Tekhn. Nauki 23 (122), 310–312 (2018).Google Scholar
  7. 7.
    V. A. Andreev, V. S. Yusupov, M. M. Perkas, and N. V. Yakushevich, “Hot rotational forging of rods 2–20 mm in diameter fabricated of titanium-nickelide-based shape memory alloys,” in Advanced Materials and Technologies, Ed. by V. V. Klubovich (VGTU, Vitebsk, 2017), Vol. 1, pp. 61–69.Google Scholar
  8. 8.
    V. A. Andreev, V. S. Yusupov, M. M. Perkas, V. V. Prosvirnin, A. E. Shelest, S. D. Prokoshkin, I. Yu. Khmelevskaya, A. V. Korotitskii, S. A. Bondareva, and P. D. Karelin, “Mechanical and functional properties of commercial semifinished products of the TN-1 alloy manufactured by warm rotational forging and ECAP,” Deform. Razrushenie Mater, No. 4, 43–48 (2017).Google Scholar
  9. 9.
    A. M. Glezer, R. V. Sundeev, L. S. Metlov, A. A. Tomchuk, and L. F. Muradimova, “Megaplastic deformation: two main principles and seven specific features,” in Proceedings of XXIII Petersburg Readings on the Strength Problems (VVM, St. Petersburg, 2018), p. 191.Google Scholar
  10. 10.
    N. N. Belousov, V. N. Varyukhin, Yu. N. V’yunenko, and E. V. Chernyaeva; “Initiation and in situ study of the structure–phase changes in metastable alloys at torsion under pressure,” in Proceedings of 60th International Scientific Conference Topical Problems of Strength (VGTU Vitebsk, 2018), pp. 328–330.Google Scholar
  11. 11.
    A. M. Glezer and L. S. Metlov, “Megaplastic deformation of solids,” Fiz. Tekhn. Vys. Davl. 8 (4), 21–35 (2008).Google Scholar
  12. 12.
    R. V. Sundeev, A. V. Shalimova, and A. M. Glezer, “Bridgmen-anvil deformation of titanium-, iron-, and zirconium-nickelide-based metallic alloys,” in Proceedings of XXI Petersburg Readings on the Strength Problems (Solo, St. Petersburg, 2014), pp. 288–292.Google Scholar
  13. 13.
    E. D. Merson, M. L. Linderov, I. N. Pigaleva, and E. D. Khafizova, “Effect of equal-channel angular pressing on the acoustic emission behavior and the fatigue fracture mechanism of the AL4-1 alloy,” Vektor Nauki TGU, No. 3, 223–226 (2013).Google Scholar
  14. 14.
    V. V. Nosov, Diagnostics of Machinery and Equipment: Textbook (Lan’, St. Petersburg, 2012).Google Scholar
  15. 15.
    A. S. Mahmud, H. Yang, S. Tee, G. Rio, and Y. Liu, “Effect of annealing on deformation-induced martensite stabilization of NiTi,” Inermetallics 16 (2), 209–214 (2008).CrossRefGoogle Scholar
  16. 16.
    N. N. Resnina, S. P. Belyaev, A. V. Sibirev, V. V. Rubanik, V. V. Rubanik Jr., and A. V. Lesota, “Effect of martensite stabilization in a TiNi alloy,” in Proceedings of XXIII Petersburg Readings on the Strength Problems (VVM, St. Petersburg, 2018), p. 139.Google Scholar
  17. 17.
    I. Yu. Khmelevskaya, P. D. Karelin, S. D. Prokoshkin, V. A. Andreev, V. S. Yusupov, M. M. Perkas, V. V. Prosvirnin, A. E. Shelest, and V. S. Komarov, “Effect of the quasi-continuous equal-channel angular pressing on the structure and functional properties of Ti–Ni-based shape memory alloys,” Phys. Met. Metallogr. 118 (3), 279–287 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. N. Belousov
    • 1
  • V. A. Andreev
    • 2
    • 3
  • E. V. Chernyaeva
    • 4
    Email author
  • A. E. Volkov
    • 4
  • Yu. N. V’yunenko
    • 5
  1. 1.Galkin Donetsk Institute for Physics and TechnologyDonetskUkraine
  2. 2.OOO Matek-Sma Industrial CenterMoscowRussia
  3. 3.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia
  5. 5.OOO Optimikst LTDSt. PetersburgRussia

Personalised recommendations