Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 10, pp 941–946 | Cite as

Effect of High-Pressure Torsion on the Lattice Parameters of α-Fe and α-Fe-Based Solid Solutions

  • O. P. Zhukov
  • V. P. FilippovaEmail author
  • A. A. Tomchuk
  • K. V. Neumoin
  • S. V. Basov
  • A. M. Glezer
  • Yu. A. Perlovich
  • O. A. Krymskaya
  • L. F. Muradimova
STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • 13 Downloads

Abstract

X-ray diffraction and computer simulation are used to study the effect of deformation by torsion under a high quasi-hydrostatic pressure on the lattice parameter of α-Fe and its solid solutions. These results are discussed in terms of possible mechanisms of interaction of dissolved elements with the vacancies formed upon deformation and the applicability of the Le Chatelier principle

Keywords:

Le Chatelier principle high-pressure torsion α-Fe solid solution iron alloys crystal structure defects computer simulation 

Notes

ACKNOWLEDGMENTS

This study was performed in terms of a state assignment of the Ministry of Education and Science of the Russian Federation (project no. 2017/113) and was supported by the Russian Foundation for Basic Research (project no. 17-08-01250).

REFERENCES

  1. 1.
    M. D. Perkas, Structure, Properties, and Fields of Application of High-Strength Maraging Steels (Mashinostroenie, Moscow, 1986).Google Scholar
  2. 2.
    V. V. Rusanenko, O. P. Zhukov, E. N. Blinova, V. P. Filippova, and S. Yu. Makuschev, “Structure and properties of high strength iron-nickel maraging steels,” Bull. Russ. Acad. Sci.: Phys. 76 (11), 1217–1220 (2012).CrossRefGoogle Scholar
  3. 3.
    V. V. Rusanenko, E. N. Blinova, V. P. Filippova, S. Yu. Makuschev, and O. P. Zhukov, “Effect of high-strength nano-structural states on the properties of multifunctional metallic iron-based materials,” Materialoved., No. 1, 25–32 (2014).Google Scholar
  4. 4.
    O. V. Savina, A. N. Babushkin, I. V. Sukhanov, and G. V. Sukhanova, “Thermoelectric properties of pure metals under high plastic deformations,” Fiz. Tekhn. Vysokikh Davlenii 19 (1), 55–62 (2009).Google Scholar
  5. 5.
    D. Alfè, L. Vocadio, G. D. Price, and M. J. Gillan, “Melting curve of materials: theory versus experiments,” J. Phys.: Cond. Matter. 16 (14) S973–S982 (2004).Google Scholar
  6. 6.
    V. P. Filippova, A. M. Glezer, A. A. Tomchuk, Yu. A. Perlovich, and O. A. Krymskaya, “Behavior of dissolved atoms in α-Fe polycrystals during megaplastic deformation by torsion under quasi-hydrostatic pressure,” Deform. Razr. Mater., No. 4, 21–27 (2014).Google Scholar
  7. 7.
    O. Kubaschewski, Iron–Binary Phase Diagram (Springer, Berlin Heidelberg, 1982).Google Scholar
  8. 8.
    V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed. (Springer, New York, 2009).Google Scholar
  9. 9.
    A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Met. Sci. 53, 893–979 (2008).CrossRefGoogle Scholar
  10. 10.
    A. V. Sisanbaev, A. A. Demchenko, M. V. Demchenko, A. V. Shalimova, L. R. Zubairov, and R. R. Mulyukov, “Peculiarities of deformation surface relief of metallic ribbon prepared under high-pressure shear,” Khim. Fiz. Mezoscopiya 15 (4), 610–615 (2013).Google Scholar
  11. 11.
    A. M. Glezer, A. A. Tomchuk, and T. V. Rassadina, “Effect of divisibility and direction of deformation by torsion in a Bridgman chamber on the structure and mechanical properties of commercial iron,” Deform. Razr. Mater., No. 4, 15–20 (2014).Google Scholar
  12. 12.
    V. P. Filippova, “Considering the body-centered cubic lattice parameter of α-Fe alloys versus concentrations of solved elements,” J. ASTM Intern. 6 (5), 1–9 (2009).Google Scholar
  13. 13.
    V. P. Filippova, S. A. Kunavin, and M. S. Pugachev, “Calculation of the parameters of the Lennard-Jones potential for pairs of identical atoms based on the properties of solid substances,” Inorg. Mater.: Appl. Res. 6 (1), 1–4 (2015). doi 10.1134/S2075113315010062Google Scholar
  14. 14.
    L. E. Kar’kina and L. I. Yakovenko, Simulation of Atomic Structure of Defects in Crystals (UrO RAN, Yekaterinburg, 2011).Google Scholar
  15. 15.
    V. P. Filippova, Yu. A. Perlovich, and O. A. Krymskaya, “Relaxation method for constructing the interaction potentials of metal–nonmetal atomic pairs,” Bull. Russ. Acad. Sci: Phys. 80 (10) 1279–1286 (2016). doi 10.3103/S1062873816100117Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. P. Zhukov
    • 1
  • V. P. Filippova
    • 1
    Email author
  • A. A. Tomchuk
    • 2
  • K. V. Neumoin
    • 1
  • S. V. Basov
    • 1
  • A. M. Glezer
    • 1
    • 3
  • Yu. A. Perlovich
    • 4
  • O. A. Krymskaya
    • 4
  • L. F. Muradimova
    • 3
  1. 1.Bardin Central Research Institute for Ferrous MetallurgyMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.National University of Science and Technology MISiSMoscowRussia
  4. 4.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations