Russian Metallurgy (Metally)

, Volume 2018, Issue 9, pp 803–807 | Cite as

Thermodynamics of the Oxygen Solutions in the Titanium-Containing Ni–Cr Melts

  • A. A. Aleksandrov
  • V. Ya. Dashevskii


A thermodynamic analysis of the oxygen solutions in the titanium-containing Ni–Cr melts at 1873 K has been performed. The oxygen solubility in the Ni–Cr melts is shown to be higher than that in pure nickel. The higher the chromium content, the higher the oxygen solubility. Low titanium contents weakly affect the oxygen concentration in a melt, which is determined by the chromium content. At titanium contents of above 0.020–0.035%, titanium determines the oxygen solubility in a melt depending on the alloy composition. The titanium contents at the minima in oxygen solubility curves and the oxygen concentrations corresponding to the titanium contents have been determined.


nickel chromium melts oxygen titanium deoxidation 



This study was supported by the Russian Foundation for Basic Research, project no. 16-03-00641 A.


  1. 1.
    V. Ya. Dashevskii, K. V. Grigorovich, P. V. Krasovskii, N. N. Makarova, and V. I. Kashin, “Thermodynamics of oxygen solutions in Ni–Cr melts,” Dokl. Akad. Nauk, 359 (2), 212–213 (1998).Google Scholar
  2. 2.
    V. Ya. Dashevskii, A. G. Kanevskii, N. N. Makarova, K. V. Grigorovich, and V. I. Kashin, “Deoxidation equilibrium of chromium in the liquid iron–nickel alloys,” ISIJ International 45 (12), 1783–1788 (2005).CrossRefGoogle Scholar
  3. 3.
    N. P. Lyakishev and M. I. Gasik, Chromium Metallurgy (ELIZ, Moscow, 1999).Google Scholar
  4. 4.
    A. A. Aleksandrov, V. Ya. Dashevskii , and L. I. Leont’ev, “Thermodynamics of Oxygen Solutions in Nickel Melts Containing Aluminum and Titanium,” Steel Transl. 46 (7), 479–483 (2016).CrossRefGoogle Scholar
  5. 5.
    L. N. Belyanchikov, “Universal method for recalculating interaction parameters of elements in changing the matrix of alloys using the quasi-regular solution theory. II. Estimating the interaction parameters of elements in nickel–based alloys,” Elecktrometallurgiya, No. 2, 29–38 (2009).Google Scholar
  6. 6.
    E. N. Kablov, I. L. Svetlov, and N. V. Petrushin, “Heat-resistant nickel alloys for cast blades with directional and single-crystal structure. Part 1,” Materialovedenie, No. 4, 32–39 (1997).Google Scholar
  7. 7.
    A. V. Logunov and Yu. A. Shmotin, Modern Heat-Resistant Nickel Alloys for Disc Gas Turbines (Nauka Tekhnologiya, Moscow, 2013).Google Scholar
  8. 8.
    Yu. V. Glagoleva, N. B. Pushkareva, Yu. E. Lapshova, et al., “Thermalphysic and kinetic properties of nickel–chromium alloys at high temperatures,” Phys. Met. Metallogr. 102 (1), 48–54 (2006).CrossRefGoogle Scholar
  9. 9.
    S. N. Paderin and D. T. Sharipov, “Thermodynamic models and parameters of oxygen dissolved in liquid nickel,” Elektrometallurgiya, No. 12, 35–43 (2004).Google Scholar
  10. 10.
    N. P. Lyakishev and M. I. Gasik, Physicochemistry and Technology of Electro Ferroalloys (ELIZ, Moscow, 2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Baikov Institute of Metallurgy and Materials Science, Russian Academy of SciencesMoscowRussia

Personalised recommendations