Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 792–794 | Cite as

Thermal Properties of Precursors for a Hard Magnetic Fe–Cr–Co Material

  • L. B. Vedmid’Email author
  • A. G. Merkushev
  • E. V. Nikitina
  • R. A. Ivanov


Single-stage linear annealing of Fe–Co and Fe–Cr alloys to a temperature of 1450°C results in the formation of cobalt and chromium solid solutions in iron, respectively.


alloy precursor hard magnetic material phase formation thermal analysis 



The experimental studies were carried out using the equipment of the Collective Use Center URAL-M at IMET, Ural Branch RAS.

This work was supported by the Federal Goal Program “Research and Developments on Priority Directions of the Development of Scientific and Technological Complex of Russia for 2014–2020” by the theme “Development of the Technology of Fabricating Ceramic Units and Parts by Selective Laser Alloying Using Innovation Methods of the Diagnostics of Processes and Obtained Parts” (unique identifier PNIER RFMEFI57816X0200) (agreement no. 14.578.21.0200).


  1. 1.
    M. A. Libman, “Hard magnetic iron–chromium–cobalt alloys” Materialoved., No. 9, 58–64 (2010).Google Scholar
  2. 2.
    V. A. Troshkina, “Method of heat treatment of Fe–Cr–Co alloys,” RF Patent 2023024, 1994.Google Scholar
  3. 3.
    V. M. Belova, S. P. Efimenko, and I. M. Milyaev, “Iron-based alloy,” RF Patent 2072745, 1997.Google Scholar
  4. 4.
    A. A. Shatsov, “Method of fabricating powder Fe–Cr–Co materials for permanent magnets,” RF Patent 203818, 1995.Google Scholar
  5. 5.
    O. A. Kaibyshev, G. F. Korznikova, and V. V. Astanin, “Method of fabricating permanent magnets from iron–chromium–cobalt alloys,” RF Patent 2204614, 2003.Google Scholar
  6. 6.
    I. V. Ryaposov and A. A. Shatsov, “Features of doping, the structure and properties of a powder hard magnetic alloy with increased operating characteristics,” Perspectiv. Mater., No. 1, 57–61 (2009).Google Scholar
  7. 7.
    H. Kaneko, M. Homma, and K. Nakamura, “New ductile permanent magnet of Fe–Cr–Co system,” in Proceeding of AIP Conference Magnetism and Magnetic Materials, Magn. Magn. Mater, No. 5, 1088–1092 (1971).Google Scholar
  8. 8.
    M. I. Alymov, A. B. Ahkudinov, V. A. Zelenskii, I. M. Milyaev, V. S. Yusupo, and A. S. Usrtyukhin, “Effect of doping and sintering conditions on the magnetic hysteretic properties of an Fe–Cr–Co powder alloy,” Fiz. Khim. Obrab. Mater., No. 3, 34–38 (2011).Google Scholar
  9. 9.
    A. S. Ustyukhin, M. I. Alymov, and I. M. Milyaev, “Magnetic hysteric properties of the Fe–26Cr–16Co powder hard magnetic alloys,” Pis’ma Mater. 4 (1), 59–61 (2014).Google Scholar
  10. 10.
    M. Okada, G. Thomas, M. Homma, and H. Kaneko, “Microstructure and magnetic properties of Fe–Cr–Co alloys,” IEEE Trans. Magnet., No. 4, 245–252 (1978).Google Scholar
  11. 11.
    S. A. Krasikov, E. M. Zhilina, O. A. Pichkaleva, A. A. Ponomarenko, L. B. Vedmid’, S. V. Zhidovinova, and V. P. Chentsov, “Effect of the intermetallic compound composition on the character of interphase interactions during aluminothermic coreduction of titanium, nickel, and molybdenum from their oxides,” Russ. Metall. (Metally), No. 8, 771–775 (2016).Google Scholar
  12. 12.
    O. Kubashewski, Iron—Binary Alloy Systems (Springer, Berlin, 1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. B. Vedmid’
    • 1
    • 2
    Email author
  • A. G. Merkushev
    • 2
  • E. V. Nikitina
    • 2
    • 3
  • R. A. Ivanov
    • 2
  1. 1.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia
  3. 3.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations