Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 737–741 | Cite as

Boundary Integral Equation Study of the Growth of a Dendritic Elliptic Paraboloid Crystal

  • E. A. Titova
  • D. V. AlexandrovEmail author
  • P. K. Galenko
Article
  • 7 Downloads

Abstract

The free growth of a dendrite crystal in the form of an elliptic paraboloid from a melt is analyzed. The exact solution of the problem is shown to coincide with the well-known Harvey–Cahn solution in the absence of anisotropy and the Gibbs–Thomson effect. A criterion for the stable growth of an elliptic paraboloid dendrite is formulated.

Keywords:

dendritic growth solidification 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 16-11-10095.

REFERENCES

  1. 1.
    A. M. Meirmanov, The Stefan Problem (De Gruyter, Berlin, 1991).Google Scholar
  2. 2.
    D. V. Alexandrov and A. P. Malygin, “Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere,” Dokl. Earth Sci. 411A, 1407–1411 (2006).CrossRefGoogle Scholar
  3. 3.
    D. V. Alexandrov and A. A. Ivanov, “The Stefan problem of solidification of ternary systems in the presence of moving phase transition regions,” J. Exper. Theor. Phys. 108, 821–829 (2009).CrossRefGoogle Scholar
  4. 4.
    G. E. Nash, Capillary-Limited, Steady State Dendritic Growth. Part I. Theoretical Development (NRL Report, 1974).Google Scholar
  5. 5.
    G. E. Nash and M. E. Gliksman, “Capillary-limited, steady-state dendritic growth. Theoretical development,” Acta Metall. 22, 1283–1290 (1974).CrossRefGoogle Scholar
  6. 6.
    J. S. Langer and L. A. Turski, “Studies in the theory of interfacial stability. Stationary symmetric model,” Acta Metall. 25, 1113–1119 (1977).CrossRefGoogle Scholar
  7. 7.
    J. S. Langer, “Studies in the theory of interfacial stability. II. Moving symmetric model,” Acta Metall. 25, 1121–1137 (1977).CrossRefGoogle Scholar
  8. 8.
    D. V. Alexandrov and P. K. Galenko, “Boundary integral approach for propagating interfaces in a binary non-isothermal mixture,” Physica A 469, 420–428 (2017).CrossRefGoogle Scholar
  9. 9.
    A. Barbieri, D. C. Hong, and J. S. Langer, “Velocity selection in the symmetric model of dendritic crystal growth,” Phys. Rev. A 35, 1802–1808 (1987).CrossRefGoogle Scholar
  10. 10.
    M. N. Barber, A. Barbieri, and J. S. Langer, “Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification,” Phys. Rev. A 36, 3340–3349 (1987).CrossRefGoogle Scholar
  11. 11.
    P. Pelce and D. Bensimon, “Theory of dendrite dynamics,” Nucl. Phys. B 2, 259–270 (1987).CrossRefGoogle Scholar
  12. 12.
    S. Tanveer, “Analytic theory for the selection of a two-dimensional needle crystal at arbitrary Peclet number,” Phys. Rev. A 40, 4756–4769 (1989).CrossRefGoogle Scholar
  13. 13.
    E. A. Brener and V. I. Mel’nikov, “Pattern selection in two-dimensional dendritic growth,” Adv. Phys. 40, 53–97 (1991).CrossRefGoogle Scholar
  14. 14.
    D. V. Alexandrov, D. A. Danilov, and P. K. Galenko, “Selection criterion of a stable dendrite growth in rapid solidification,” Int. J. Heat Mass Trans. 101, 789–799 (2016).CrossRefGoogle Scholar
  15. 15.
    D. V. Alexandrov and P. K. Galenko, “Selected mode for rapidly growing needle-like dendrite controlled by heat and mass transport,” Acta Mater. 137, 64–70 (2017).CrossRefGoogle Scholar
  16. 16.
    D. V. Alexandrov, P. K. Galenko, and L. V. Toropova, “Thermo-solutal and kinetic modes of stable dendritic growth with different symmetries of crystalline anisotropy in the presence of convection,” Phil. Trans. R. Soc. A 376, 20170215 (2018).CrossRefGoogle Scholar
  17. 17.
    G. P. Ivantsov, “Temperature field around a spherical, cylindrical or needleshaped crystal growing in a supercooled melt,” Dokl. Akad. Nauk SSSR LVIII, 567–569 (1947).Google Scholar
  18. 18.
    D. V. Alexandrov and P. K. Galenko, “Dendrite growth under forced convection: analysis methods and experimental tests,” Physics-Uspekhi 57, 771–786 (2014).CrossRefGoogle Scholar
  19. 19.
    G. Horvay and J. W. Cahn, “Dendritic and spheroidal growth,” Acta Metall. 9, 695–705 (1961).CrossRefGoogle Scholar
  20. 20.
    G. B. McFadden, S. R. Coriell, and R. F. Sekerka, “Analytic solution for a non-axisymmetric isothermal dendrite,” J. Cryst. Growth 208, 726–745 (2000).CrossRefGoogle Scholar
  21. 21.
    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products (Fizmatgiz, Moscow, 1963).Google Scholar
  22. 22.
    D. V. Alexandrov and P. K. Galenko, “Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow,” EPL 119, 16001 (2017).CrossRefGoogle Scholar
  23. 23.
    D. V. Alexandrov and P. K. Galenko, “Dendritic growth with the six-fold symmetry: theoretical predictions and experimental verification,” J. Phys. Chem. Solids 108, 98–103 (2017).CrossRefGoogle Scholar
  24. 24.
    T. Yoshikazu, S. Akio, and O. Seiji, “Ice crystal growth in supercooled solution,” Int. J. Refrigeration 25, 218–225 (2002).CrossRefGoogle Scholar
  25. 25.
    D. V. Alexandrov and P. K. Galenko, “Selection criterion of stable dendritic growth at arbitrary Peclet numbers with convection,” Phys. Rev. E 87, 062403 (2013).CrossRefGoogle Scholar
  26. 26.
    D. V. Alexandrov and P. K. Galenko, “Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow,” Phys. Chem. Chem. Phys. 17, 19149–19161 (2015).CrossRefGoogle Scholar
  27. 27.
    G. Demange, H. Zapolsky, R. Patte, and M. Brunel, “Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model,” Phys. Rev. E 96, 022803–022816 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Titova
    • 1
  • D. V. Alexandrov
    • 1
    Email author
  • P. K. Galenko
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations