Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 728–732 | Cite as

Mechanochemical Synthesis of Intermetallic Compounds in the Gallium–Iridium System

  • E. A. PavlovEmail author
  • I. V. Chuprov
  • M. V. Nikulin
  • E. V. Mal’tsev
  • A. A. PshenichnayaEmail author
  • T. F. GrigorevaEmail author
  • E. A. Pastukhov
  • A. P. Skuratov
  • N. Z. Lyakhov
Article
  • 11 Downloads

Abstract

The interaction between a solid inert metal (Ir) and an active liquid metal (Ga) during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with EDS-apparatus for high-resolution energy dispersive X-ray microanalysis. The influence of mechanical activation conditions on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and on their solubility in various acids is investigated. Being a surfactant for iridium, gallium propagates along the grain boundaries of polycrystalline iridium particles during mechanical activaiton and, hence, sharply decreases their strength. As a result of strong mechanical deformation during activation, the contact surface area between the solid and liquid metals, where the intermetallic compounds form intensely, increases sharply. As a result of treatment of the products of mechanical activaiton by a mixture of concentrated hydrochloric and nitric acids, iridium (>30%) from passes into an acid solution and forms HxIrCly complex compounds, which can interact with bases to form soluble complex salts.

Keywords:

mechanochemical synthesis intermetallic compounds gallium iridium complex compounds of iridium 

Notes

ACKNOWLEDGMENTS

This work was performed in terms of project no. 1622/17 of the Krasnoyarsk Plant of Nonferrous Metals and the Institute of Solid State Chemistry and Mechanochemistry.

REFERENCES

  1. 1.
    A. Yermakov, P. Panfilov, and R. Adamesku, “The main features of plastic deformation of iridium single crystals,” J. Mater. Sci. Lett. 9, 696–697 (1990).Google Scholar
  2. 2.
    M. A. Dombrovskaya, D. G. Lisienko, E. D. Kubrina, A. S. Kazakov, and E. P. Aleksandrov, “Validation of spectral analysis of iridium for a metal nanopowder,” Zavod. Lab. 81 (1-II), 62–64 (2015).Google Scholar
  3. 3.
    S. S. Hecker, D. L. Rohr, and D. F. Stein, “Brittle fracture in iridium,” Metall. Trans. A 9 (4), 481–488 (1978).Google Scholar
  4. 4.
    N. I. Timofeev, A. V. Ermakov, V. A. Dmitriev, and P. E. Panfilov, Fundamentals of Metallurgy and Technology of Manufacturing Products from Iridium (UrO RAN, Yekaterinburg, 1996).Google Scholar
  5. 5.
    L. B. Hunt, “A history of iridium,” Platinum Metals Review 31 (1), 32–41 (1987).Google Scholar
  6. 6.
    S. I. Ginzburg, N. A. Ezerskaya, I. V. Prokof’eva, N. V. Fedorenko, V. I. Shlenskaya, and N. K. Bel’skii, Analytical Chemistry of Platinum Metals, Ed. by I. P. Alimarin (Nauka, Moscow, 1972).Google Scholar
  7. 7.
    I. K. Kakovskii and Yu. M. Potashnikov, in Kinetics of Dissolution (Metallurgiya, Moscow, 1975), pp. 126–138.Google Scholar
  8. 8.
    R. C. Hugo and R. Hoagland, “In situ TEM observation of aluminum embrittlement by liquid gallium,” Scripta Mater. 38 (3), 523–529 (1998).Google Scholar
  9. 9.
    R. C. Hugo and R. Hoagland, “Penetration of aluminum: in situ TEM observation at the penetration front,” Scripta Mater. 41 (12), 1341–1346 (1999).Google Scholar
  10. 10.
    T. F. Grigoreva, A. P. Barinova, and N. Z. Lyakhov, Mechanochemical Synthesis in Metal Systems (Parallel’, Novosibirsk, 2008).Google Scholar
  11. 11.
    Phase Diagrams of Binary Metallic Systems: A Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 1997), Vol. 2.Google Scholar
  12. 12.
    R. V. Ivanova, Chemistry and Technology of Gallium (Metallurgiya, Moscow, 1973).Google Scholar
  13. 13.
    A. R. Miedema, “On the heat of formation of solid alloys (II),” J. Less-Common Met. 46 (1), 67–83 (1976).Google Scholar
  14. 14.
    A. R. Miedema, P. F. de Chatel, and F. R. de Boer, “Cohesion in alloys—fundamentals of a semi-empirical model,” Physica B 100, 1–28 (1980).Google Scholar
  15. 15.
    H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988).Google Scholar
  16. 16.
    A. P. Savitskii, Liquid-Phase Sintering of Systems with Interacting Components (Nauka, Novosibirsk, 1991).Google Scholar
  17. 17.
    B. D. Summ and Yu. V. Goryunov, Physicochemical Fundamentals of Wetting and Spreading (Khimiya, Moscow, 1976).Google Scholar
  18. 18.
    S. P. Yatsenko, Gallium. Interaction with Metals (Nauka, Moscow, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Pavlov
    • 1
    Email author
  • I. V. Chuprov
    • 1
  • M. V. Nikulin
    • 1
  • E. V. Mal’tsev
    • 1
  • A. A. Pshenichnaya
    • 1
    • 2
    Email author
  • T. F. Grigoreva
    • 3
    Email author
  • E. A. Pastukhov
    • 4
  • A. P. Skuratov
    • 5
  • N. Z. Lyakhov
    • 3
  1. 1.OAO Krasnoyarsk Plant of Nonferrous Metals Named after V. N. GulidovKrasnoyarskRussia
  2. 2.Kirensky Institute of Physics, Federal Research Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  3. 3.Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  4. 4.Institute of Metallurgy, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  5. 5.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations