Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 707–715 | Cite as

Mathematical Simulation of the Crystal Nucleation and Growth at the Intermediate Stage of a Phase Transition

  • E. V. Makoveeva
  • D. V. AlexandrovEmail author
Article
  • 6 Downloads

Abstract

The crystal nucleation and growth in supercooled melts and supersaturated solutions are theoretically studied with allowance for the “diffusion” term in a kinetic equation for a distribution function. The flux of crystals of a given size from a metastable system and the heat flow from it are taken into account, and the nucleation frequency is considered according to the Meirs kinetics. Analytical solutions to stationary and nonstationary problems are obtained.

Keywords:

nucleation crystal growth phase transition crystallizer 

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research, project no. 16-08-00932.

REFERENCES

  1. 1.
    G. M. Madras and B. J. McCoy, “Transition from nucleation and growth to Ostwald ripening,” Chem. Eng. Sci. 57, 3809–3818 (2002).CrossRefGoogle Scholar
  2. 2.
    T. H. Zhang and X. Y. Liu, “Nucleation: what happens at the initial stage?” Angew. Chem. Int. Ed. 48, 1308–1312 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Uwaha and K. Koyama, “Transition from nucleation to ripening in the classical nucleation model,” J. Cryst. Growth 312, 1046–1054 (2010).CrossRefGoogle Scholar
  4. 4.
    A. A. Chernov, Modern Crystallography III (Springer, Heidelberg, 1984).CrossRefGoogle Scholar
  5. 5.
    B. Chalmers, Physical Metallurgy (Wiley, New York, 1959).Google Scholar
  6. 6.
    O. Todes, V. A. Seballo, and L. D. Gol’tsiker, Bath Crystallization from Solutions (Khimiya, Leningrad, 1984).Google Scholar
  7. 7.
    J. M.-H. Poon, C. D. Immanuel, F. J. Doyle, III, and J. D. Litser, “A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena,” Chem. Eng. Sci. 63, 1315–1329 (2008).CrossRefGoogle Scholar
  8. 8.
    J. M.-H. Poon, R. Ramachandran, C. F. W. Sanders, T. Glaser, C. D. Immanuel, F. J. Doyle, III, J. D. Litser, F. Stepanek, F. Y. Wang, and I. T. Cameron, “Experimental validation studies on a multi-scale and multi-dimensional population balance model of batch granulation,” Chem. Eng. Sci. 64 775–786 (2009).CrossRefGoogle Scholar
  9. 9.
    C. V. Thompson and F. Spaepan, “Homogeneous crystal nucleation in binary metallic melts,” Acta Metall. 31, 2021–2027 (1983).CrossRefGoogle Scholar
  10. 10.
    K. F. Kelton and A. L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2010).Google Scholar
  11. 11.
    Nucleation, Ed. by A. C. Zettlemoyer (Dekker, New York, 1969).Google Scholar
  12. 12.
    M. Volmer, Kinetik der Phasenbildung (Steinkopf Verlag, Dresden, 1939).Google Scholar
  13. 13.
    J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).Google Scholar
  14. 14.
    I. M. Lifshitz and V. V. Slyozov, “The kinetics of precipitation from supersaturated solid solutions,” J. Phys. Chem. Solids 19, 35–50 (1961).CrossRefGoogle Scholar
  15. 15.
    M. Tokuyama, M. Kawasaki, and V. Enomoto, “Kinetic equations for Ostwald ripening,” Physica A 134, 323–338 (1986).CrossRefGoogle Scholar
  16. 16.
    N. Akaiwa and D. I. Meiron, “Numerical simulation of two-dimensional late-stage coarsening for nucleation and growth,” Phys. Rev. E 51, 5408–5421 (1995).CrossRefGoogle Scholar
  17. 17.
    Y. Farjoun and J. C. Neu, “Aggregation according to classical kinetics: from nucleation to coarsening,” Phys. Rev. E 83, 051607 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Avrami, “Granulation, phase change, and microstructure kinetics of phase change. III,” J. Chem. Phys. 9, 177–184 (1941).CrossRefGoogle Scholar
  19. 19.
    D. J. W. Aastuen, N.A. Clark, J. C. Swindal, and C. D. Muzny, “Determination of the colloidal crystal nucleation rate density,” Phase Trans. 21, 139–155 (1990).CrossRefGoogle Scholar
  20. 20.
    K. Binder and D. Stauffer, “Statistical theory of nucleation, condensation and coagulation,” Adv. Phys. 25, 343–396 (1976).CrossRefGoogle Scholar
  21. 21.
    J. S. Langer and A. J. Schwartz, “Kinetics of nucleation in near-critical fluids,” Phys. Rev. A 21, 948–958 (1980).CrossRefGoogle Scholar
  22. 22.
    V. A. Shneidman, “Transient nucleation with a monotonically changing barrier,” Phys. Rev. E 82, 031603 (2010).CrossRefGoogle Scholar
  23. 23.
    V. A. Shneidman, “Time-dependent distributions in self-quenching nucleation,” Phys. Rev. E 84, 031602 (2011).CrossRefGoogle Scholar
  24. 24.
    Yu. A. Buyevich and V. V. Mansurov, “Kinetics of the intermediate stage of phase transition in batch crystallization,” J. Cryst. Growth 104, 861–867 (1990).CrossRefGoogle Scholar
  25. 25.
    Yu. A. Buyevich and A. O. Ivanov, “Kinetics of phase separation in colloids II. Non-linear evolution of a metastable colloid,” Phys. A. 193, 221–240 (1993).CrossRefGoogle Scholar
  26. 26.
    A. O. Ivanov and A. Yu. Zubarev, “Non-linear evolution of a system of elongated droplike aggregates in a metastable magnetic fluid,” Phys. A 251, 348–367 (1998).CrossRefGoogle Scholar
  27. 27.
    D. V. Alexandrov and A. P. Malygin, “Transient nucleation kinetics of crystal growth at the intermediate stage of bulk phase transitions,” J. Phys. A: Math. Theor. 46, 455101 (2013).CrossRefGoogle Scholar
  28. 28.
    A. Randolph and M. Larson, Theory of Particulate Processes (Academic, New York, 1988).Google Scholar
  29. 29.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).Google Scholar
  30. 30.
    U. Vollmer and J. Raisch, “H-control of a continuous crystallizer,” Control Engineering Practice 9, 837–845 (2001).CrossRefGoogle Scholar
  31. 31.
    M. V. Fedoruk, Saddle-Point Method (Nauka, Moscow, 1977).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations