Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 742–746 | Cite as

Selection of the Optimum Electrolysis Bath Composition for the Synthesis of Holmium–Iron Triad Metal Intermetallics

  • H. B. Kushkhov
  • R. A. KardanovaEmail author
  • V. V. Khasanov
  • I. A. Borukaeva


The results of high-temperature electrochemical synthesis of holmium–iron triad metal intermetallics in chloride melts are presented. The influence of the current density, the composition of an electrolysis bath, and the synthesis time on the electrolysis processes and the composition of the end product is studied. The electrolysis of the molten KCl–NaCl mixture containing 0.5–2.5 mol % holmium trichloride and 0.1–2.5 mol % nickel (cobalt) dichloride at a current density of 0.5–2.0 A/cm2, a temperature of 973–1073 K, and an electrolysis time of 30–90 min is shown to cause the formation of a cathode deposit in the form of a “metal–salt pear” on a tungsten electrode. This pear consists of a mixture of metallic nickel (cobalt) and HoNi, HoNi5, and HoNi3 (HoCo2, HoCo3, HoCo5, Ho2Co17) intermetallics. The intermetallic compound content in the cathode deposit is found to increase at a constant current density (1.2 A/cm2) and when the holmium chloride content in a melt or the ratio of the holmium chloride concentration to the nickel (cobalt) chloride concentration increases. Only a mixture of holmium–nickel (cobalt) intermetallics can exist in the cathode deposit if the electrolysis bath composition and the electrolysis parameters are controlled. The electrochemical synthesis of holmium–iron intermetallics was performed under galvanostatic conditions in molten KCl–NaCl–HoCl3. Iron ions are introduced in a melt via the anodic dissolution of metallic iron. The results of X-ray diffraction analysis of the electrolysis products demonstrate the fundamental possibility of synthesizing holmium–iron intermetallics. The optimum conditions of electrosynthesis of holmium–iron triad metal intermetallics are determined.

Keywords: electrochemical synthesis intermetallic compounds holmium nickel cobalt iron. 



  1. 1.
    I. M. Bigaeva and G. R. Dzitoev, “Magnetic materials based on rare earth metals,” Mezhd. Studench. Nauchn. Vestn., No. 3–4, 550 (2015).Google Scholar
  2. 2.
    V. V. Zhigunov and A. V. Kasimtsev, “Phase and structural transformations during the formation of intermetallic powders,” Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokr., No. 3, 5–12 (2009).Google Scholar
  3. 3.
    Y. Z. Su, Q. Q. Yang, and G. K. Liu, “Electroreduction of Ho3+ on nickel catode in molten KCl–HoCl3,” I. Rare Earths 18 (1), 34–38 (2000).Google Scholar
  4. 4.
    S. V. Zhukovin, O. V. Chernova, and A. N. Bushuev, “Diffusion saturation of nickel with terbium and holmium in chloride melts,” in Proceedings of XV All-Russia Conference on Improvement of Technology of Glavanic Coatings (2012), p. 33.Google Scholar
  5. 5.
    O. K. Kuvandikov, Kh. O. Shakarov, and M. K. Salakhitdinova, “Magnetic properties of the intermetallic compounds of holmium with the iron group elements at high temperatures,” Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 105–107 (1997).Google Scholar
  6. 6.
    Yu. V. Karyakin and I. I. Angelov, Pure Chemical Substances (Khimiya, Moscow, 1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • H. B. Kushkhov
    • 1
  • R. A. Kardanova
    • 1
    Email author
  • V. V. Khasanov
    • 1
  • I. A. Borukaeva
    • 1
  1. 1.Kabardino-Balkar State UniversityNalchikRussia

Personalised recommendations