Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 763–766 | Cite as

Formation of an Electrode Deposit under Galvanostatic Conditions

  • V. A. IsaevEmail author
  • O. V. Grishenkova
  • M. V. Laptev
  • A. V. Isakov
  • Yu. P. Zaikov


The laws of formation of a continuous deposit layer at a given direct current are considered. Equations are analyzed to calculate the time dependences of overpotential for instantaneous nucleation with kinetic or diffusion control of new-phase growth. The calculated dependences are compared with the experimental ones obtained for silicon electrodeposition from a fluoride–chloride melt.

Keywords: electrocrystallization galvanostatic method nucleation growth continuous layer melt 



This work was supported by the Russian Science Foundation, project no. 16-13-00061.


  1. 1.
    B. R. Scharifker and G. J. Hills, “Theoretical and experimental studies of multiple nucleation,” Electrochim. Acta 28 (7), 879–889 (1983).Google Scholar
  2. 2.
    B. R. Scharifker and J. Mostany, “Three-dimensional nucleation with diffusion controlled growth. Part I. Number density of active sites and nucleation rates per site,” J. Electroanal. Chem. 177, 13–23 (1984).Google Scholar
  3. 3.
    V. A. Isaev and A. N. Baraboshkin, “Three-dimensional electrochemical phase formation,” J. Electroanal. Chem. 377, 33–37 (1994).Google Scholar
  4. 4.
    V. A. Isaev, Electrochemical Phase Formation (UrO RAN, Yekaterinburg, 2007).Google Scholar
  5. 5.
    V. A. Isaev, O. V. Grishenkova, and Yu. P. Zaykov, “Analysis of the geometrical-probabilistic models of electrocrystallization,” Russ. Metall. (Metally), 2016 (8), 776–784 (2016).Google Scholar
  6. 6.
    V. A. Isaev and O. V. Grishenkova, “Kinetics of electrochemical nucleation and growth,” Electrochem. Comm. 3, 500–504 (2001).Google Scholar
  7. 7.
    V. A. Isaev and O. V. Grishenkova, “Galvanostatic phase formation,” J. Solid State Electrochem. 18, 2383–2386 (2014).Google Scholar
  8. 8.
    A. N. Kolmogorov, “On the statistical theory of metal crystallization,” Izv. Akad. Nauk SSSR. Ser. Mat., No. 3, 355–359 (1937).Google Scholar
  9. 9.
    V. Z. Belenkii, Geometric-Probabilistic Models of Crystallization. Phenomenological Approach (Nauka, Moscow, 1980).Google Scholar
  10. 10.
    C. Johans, K. Kontturi, and D. J. Schiffrin, “Nucleation at liquid/liquid interfaces: galvanostatic study,” J. Electroanal. Chem. 526, 29–35 (2002).Google Scholar
  11. 11.
    Yu. P. Zaykov, S. I. Zhuk, A. V. Isakov, O. V. Grishenkova, and V. A. Isaev, “Electrochemical nucleation and growth of silicon in the KF–KCl–K2SiF6 melt,” J. Solid State Electrochem. 19, 1341–1345 (2015).Google Scholar
  12. 12.
    S. I. Zhuk, V. A. Isaev, O. V. Grishenkova, A. V. Isakov, A. P. Apisarov, and Yu. P. Zaykov, “Silicon electrodeposition from K2SiF6 and SiO2 containing chloride-fluoride melts,” J. Serbian Chem. Soc. 82, 51–62 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Isaev
    • 1
    Email author
  • O. V. Grishenkova
    • 1
  • M. V. Laptev
    • 1
  • A. V. Isakov
    • 1
  • Yu. P. Zaikov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations