Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 758–762 | Cite as

Potentiostatic Current Transients during the Diffusion-Controlled Growth of a New Phase

  • V. A. IsaevEmail author
  • O. V. Grishenkova
  • Yu. P. Zaikov


The problem of a mathematical description of the formation of an electrode deposit layer according to the mechanism of nucleation–growth–overlapping of new-phase 3D clusters and their diffusion zones is considered. The characteristics of potentiostatic current transients are analyzed. Expressions for calculating the nucleation parameters and the diffusion coefficient of deposited ions are obtained.


electrocrystallization chronoamperometry nucleation growth overlapping diffusion 



  1. 1.
    G. Gunawardena, G. J. Hills, I. Montenegro, and B. Scharifker, “Electrochemical nucleation,” J. Electroanal. Chem. 138, 225–239 (1982).Google Scholar
  2. 2.
    E. Bosco and S. K. Rangarajan, “Electrochemical phase formation (ECPF) and macrogrowth. Part I. Hemispherical models,” J. Electroanal. Chem. 134, 213–224 (1982).Google Scholar
  3. 3.
    M. Y. Abyaneh, “Calculation of overlap for nucleation and three-dimensional growth of centres,” Electrochim. Acta. 27 (9), 1329–1334 (1982).Google Scholar
  4. 4.
    S. Fletcher, “Electrochemical deposition of hemispherical nuclei under diffusion control. Some theoretical considerations,” J. Chem. Soc. Faraday Trans. 79, 467–479 (1983).Google Scholar
  5. 5.
    B. R. Scharifker and G. J. Hills, “Theoretical and experimental studies of multiple nucleation,” Electrochim. Acta 28 (7), 879–889 (1983).Google Scholar
  6. 6.
    B. R. Scharifker and J. Mostany, “Three-dimensional nucleation with diffusion controlled growth. Part I. Number density of active sites and nucleation rates per site,” J. Electroanal. Chem. 177, 13–23 (1984).Google Scholar
  7. 7.
    M. Sluyters-Rehbach, J. H. O. J. Wijenberg, E. Bosco, and J. H. Sluyters, “The theory of chronoamperometry for the investigation of electrocrystallization. Mathematical description and analysis in the case of diffusion-controlled growth,” J. Electroanal. Chem. 236, 1–20 (1987).Google Scholar
  8. 8.
    P. A. Bobbert, M. M. Wind, and J. Vlieger, “Diffusion to an assembly of slowly growing particles on a substrate,” Physica A 146, 69–88 (1987).Google Scholar
  9. 9.
    M. V. Mirkin and A. P. Nilov, “Three-dimensional nucleation and growth under controlled potential,” J. Electroanal. Chem. 283 (1–2), 35–51 (1990).Google Scholar
  10. 10.
    M. Y. Abyaneh, “Formulation of a general model for nucleation and growth of electrodeposits,” Electrochim. Acta 36 (3–4), 727–732 (1991).Google Scholar
  11. 11.
    V. A. Isaev and A. N. Baraboshkin, “Three-dimensional electrochemical phase formation,” J. Electroanal. Chem. 377, 33–37 (1994).Google Scholar
  12. 12.
    L. Heerman and A. Tarallo, “Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth,” J. Electroanal. Chem. 470, 70–76 (1999).Google Scholar
  13. 13.
    B. R. Scharifker, J. Mostany, M. Palomar-Pardavé, and I. González, “On the theory of the potentiostatic current transient for diffusion-controlled three-dimensional electrocrystallization processes,” J. Electrochem. Soc. 146 (3), 1005–1012 (1999).Google Scholar
  14. 14.
    E. Matthijs, S. Langerock, E. Michailova, and L. Heerman, “The potentiostatic transient for 3D nucleation with diffusion-controlled growth: theory and experiment for progressive nucleation,” J. Electroanal. Chem. 570, 123–133 (2004).Google Scholar
  15. 15.
    V. A. Isaev, Electrochemical Phase Formation (UrO RAN, Yekaterinburg, 2007).Google Scholar
  16. 16.
    V. Z. Belen’kii, Geometric-Probabilistic Models of Crystallization. Phenomenological Approach (Nauka, Moscow, 1980).Google Scholar
  17. 17.
    V. A. Isaev, O. V. Grishenkova, and Yu. P. Zaykov, “Analysis of the geometrical–probabilistic models of electrocrystallization,” Russ. Metall. (Metally), No. 8, 776–784 (2016).Google Scholar
  18. 18.
    A. N. Kolmogorov, “On the statistical theory of metal crystallization,” Izv. Akad. Nauk SSSR. Ser. Mat., No. 3, 355–359 (1937).Google Scholar
  19. 19.
    B. Delman, Kinetics of Heterogeneous Reactions (Mir, Moscow, 1972).Google Scholar
  20. 20.
    J. W. M. Jacobs, “Note on a theory of three-dimensional electrochemical nucleation with diffusion-controlled growth,” J. Electroanal. Chem. 247, 135–144 (1988).Google Scholar
  21. 21.
    A. Radisic, P. M. Vereecken, J. B. Hannon, P. C. Searson, and F. M. Ross, “Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data,” Nano Let. 6 (2), 238–242 (2006).Google Scholar
  22. 22.
    A. Radisic, P. M. Vereecken, P. C. Searson, and F. M. Ross, “The morphology and nucleation kinetics of copper islands during electrodeposition,” Surface Sci. 600, 1817–1826 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Isaev
    • 1
    Email author
  • O. V. Grishenkova
    • 1
  • Yu. P. Zaikov
    • 1
  1. 1.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations