Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 771–776 | Cite as

Preparation of a Nickel–Holmium Alloy Coating in an Equimolar HoCl3-Containing NaCl–KCl Melt

  • A. N. BushuevEmail author
  • O. V. El’kin
  • I. V. Tolstobrov
  • A. V. Sazanov
  • D. A. Kondrat’ev


Cyclic voltammetry is used to study the electrolytic reduction of holmium ions on a nickel electrode in a holmium chloride-containing equimolar molten mixture of sodium and potassium chlorides in a temperature range of 1073–1173 K. The potentials of formation of nickel–holmium intermetallic compounds (IMCs) are determined. Nickel–holmium intermetallic compounds are synthesized by controlled potential electrolysis. Under the selected electrolysis conditions, the prepared coating is shown to be single-phase and its composition corresponds to the HoNi2 stoichiometry. The coefficients of reaction diffusion of holmium in nickel are calculated and the activation energy of alloy-formation process is determined.

Keywords: ionic melts holmium nickel cyclic voltammetry diffusion coefficient activation energy 



  1. 1.
    Rare and Diffused Elements. Chemistry and Technology, Ed. by S. S. Korovin (MISiS, Moscow, 1996), Book 1.Google Scholar
  2. 2.
    A. A. Il’in, A. P. Il’in, V. Yu. Kurochkin, “Study of physicochemical properties of lanthanide-promoted iron-oxide,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 53 (5), 90–93 (2010).Google Scholar
  3. 3.
    S. V. Pletnev, Magnetic Field: Properties, Application. Scientific and Educational Methodical Handbook (Gumanistika, St. Petersburg, 2004).Google Scholar
  4. 4.
    S. V. Mikhailin and V. D. Zhitkovskiy, “Manufacturing of permanent magnets from magnetoplasts”, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 7, 39–40 (2006).Google Scholar
  5. 5.
    S. P. Malyshenko and I. A. Romanov, “Study of thermodynamic properties of the hydrogen absorbing LaFe0.1Mn0.3Ni4.8 alloy for hydrogen accumulation and purification systems,” Teplofiz. Vysokikh Temp. 52 (3), 415–422 (2014).Google Scholar
  6. 6.
    S. A. Lushnikov and T. V. Filippova, “LaNi5 and RT3 hydrides (R: Ce, Nd, Gd, Er; T: Co, Ni, Fe) prepared at low both temperature and H2 pressure,” Neorg. Mater. 49 (8), 827–832 (2013).Google Scholar
  7. 7.
    Introduction to Hydrogen Engineering, Ed. by V. A. Legasov (Energoizdat, Moscow, 1984).Google Scholar
  8. 8.
    V. N. Verbetskii, Yu. A. Velikorodnyi, and S. V. Lushchekina, “Synthesis of hydride based on the YbNi2 intermetallic compound,” Vestn. Mosk. Univ. Ser. 2: Khim. 43 (1), 58–60 (2002).Google Scholar
  9. 9.
    V. M. Azhazha, B. V. Borts, A. V. Vanzha, N. D. Rybal’chenko, and E. P. Shevyakova, “Possibilities of using the rare-earth elements in designing structural materials for the Ukrainian nuclear industry,” Vopr. Atomn. Nauki Tekhn., No. 1, 195–201 (2008).Google Scholar
  10. 10.
    I. V. Doshchechkina and N. G. Efimenko, “Evaluation of the structural strength of yttrium-containing low-carbon cast steel,” Vestn. Khar’kovskogo Natsional’nogo Avtomobil’no-Dorozhnogo Univ. Sbornik Nauch. Trudov, 46 (2009).Google Scholar
  11. 11.
    V. Smolenski and A. Novoselova, “Electrochemistry of redox potential of the couple Tm3+/Tm2+ and the formation of a Tm–Al alloy in fused NaCl–2CsCl eutectic,” Electrochim. Acta 63, 179–184 (2012).Google Scholar
  12. 12.
    Y. Castrillejo, M. R. Bermejo, E. Barrado, A. M. Martinez, “Electrochemical behavior of erbium in the eutectic LiCl–KCl at W and Al electrodes,” Electrochim. Acta 51 (10), 1941–1951 (2006).Google Scholar
  13. 13.
    Kh. B. Kushkhov, A. S. Uzdenova, A. M. Kakhtan, and L. A. Uzdenova, “Study of electrochemical reduction of dysprosium ions in a chloride melt on various electrodes,” Rasplavy, No. 5, 25–39 (2013).Google Scholar
  14. 14.
    Y. Castrillejo, M. R. Bermejo, E. Barrado E., Medina J., and A. M. Martinez, “Electrodeposition of Ho and electrochemical formation of Ho–Al alloys from the eutectic LiCl–KCl,” The Electrochem. Soc. 153 (10), 713–721 (2006).Google Scholar
  15. 15.
    Kh. B. Kushkhov, M. K. Vindizheva, R. A. Mukozheva, M. R. Tlenkopachev, and A. Kh. Abazova, “Electrochemical reduction of cerium (III) ions on a silver electrode in a chloride melt at 823 K,” Elektrokhim. 49 (4), 411–415 (2013).Google Scholar
  16. 16.
    Kh. B. Kushkhov, M. K. Vindizheva, and Z. A. Zhanikayeva, “Electrochemical reduction of praseodymium ions on a silver electrode in chloride and chloride–fluoride melts,” Rasplavy, No. 4, 62–68 (2005).Google Scholar
  17. 17.
    Yu. Ya. Andreev, N. P. Kobzeva, and N. I. Isayev, “Increase of the heat resistance of nickel and its alloys by galvanic diffusion saturation with lanthanum and neodymium from a salt melt,” Zashch. Met. 20 (6), 957–959 (1984).Google Scholar
  18. 18.
    Wei Han, Qingnan Sheng, and Milin Zhang, “The electrochemical formation of Ni–Tb intermetallic compounds on a nickel electrode in the LiCl–KCl eutectic melts,” The Minerals, Metals & Materials Society and ASM International 6, 416–421 (2013).Google Scholar
  19. 19.
    L. Guankun, T. Yexiang, H. Quichan, and H. Hong, “Electroreduction of Yb(III) on nickel cathode in molten chloride,” Trans. Nonfer. Met. Soc. China 8, 516–519 (1998).Google Scholar
  20. 20.
    Wei Han, Qingnan Sheng, Milin Zhang, Ting-Ting Sun, Yaochen Liu, Ke Ye, Yongde Yan, and Yingcai Wang, “The electrochemical formation of Ni–Tb intermetallic compounds on a nickel electrode in the LiCl–KCl eutectic melts,” Metall. Mater. Trans. 45, 929–935 (2014).Google Scholar
  21. 21.
    Y. Sato and M. Hara, “Formation of intermetallic compounds layer composed of Ni3Y and Ni5Y by electrodeposition on Ni using molten NaCl–KCl–YCl3,” Mater. Trans. JIM 37 (9), 1525–1528 (1996).Google Scholar
  22. 22.
    Mei Li, Ting-Ting Sun, Wei Han, Shan-Shan Wang, Milin Zhang, Yongde Yan, and Zhang Meng, “Electrochemical preparation of Ho–Ni intermetallic compounds in LiCl–KCl eutectic melts,” Chinese J. Inorg. Chem. 31 (1), 177–182 (2015).Google Scholar
  23. 23.
    Kh. B. Kushkhov, R. A. Kardanova, A. A. Kyarov, M. M. Margusheva, Kh. M. Margusheva, and I. A. Borukaeva, “Preparation of holmium intermetallics by electrolysis of molten media,” Advances in Current Natural Sciences, No. 4, 30–34 (2017).Google Scholar
  24. 24.
    Y. Z. Su, Q. Q. Yang, and G. K. Liu, “Electroreduction of Ho3+ on nickel cathode in molten KCl–HoCl3,” J. Rare Earths 18 (1), 34–38 (2000).Google Scholar
  25. 25.
    M. V. Smirnov, Electrode Potentials in Molten Chlorides (Nauka, Moscow, 1973).Google Scholar
  26. 26.
    G. E. Revzin, “Anhydrous chlorides of rare-earth elements and scandium,” in Production Methods of Chemical Reagents and Preparations: Collective Book (IREA, Moscow, 1967), Vol. 16, pp. 124–129.Google Scholar
  27. 27.
    D. I. Ryabchikov and V. A. Ryabukhin, Analytical Chemistry of Rare-Earth Elements and Yttrium (Nauka, Moscow, 1966).Google Scholar
  28. 28.
    L. Massot, P. Chamelot, and P. Taxil, “Cathodic behaviour of samarium(III) in LiF–CaF2 media on molybdenum and nickel electrodes,” Electrochim. Acta 50 (28), 5510–5517 (2005).Google Scholar
  29. 29.
    Y. Castrillejo, M. R. Bermejo, E. Barrado, and A. M. Martinez, “Electrochemical behavior of erbium in the eutectic LiCl–KCl at W and Al electrodes,” Electrochim. Acta 51 (10), 1941–1951 (2006).Google Scholar
  30. 30.
    Yu. Ya. Andreev, V. S. Yanin, and I. S. Kordunskii, “Kinetics of alloy formation on a solid cathode during preparation of diffusion coatings by controlled potential electrolysis mode from molten salts,” in Preparation of Metallic Coatings from Molten Salts (Sverdlovsk, 1982), pp. 41–42.Google Scholar
  31. 31.
    L. G. Voroshnin, B. M. Khusid, B. Kh. Khina, and A. V. Nikopchik, “Theoretical aspects of the formation and growth of phases in protective coatings,” in Study and Development of Theoretical Problems in Powder Metallurgy and Protective Coatings (Minsk, 1984), Part 3, pp. 44–51.Google Scholar
  32. 32.
    V. V. Soroka, A. V. Kovalevskii, and N. G. Ilyushchenko, “Alloy formation during the current-free transfer of rare-earth metals on a nickel substrate in chloride melts,” Rasplavy, No. 6, 38–43 (1992).Google Scholar
  33. 33.
    G. Xie G., K. Ema, and Y. Ito, “Determination of the diffusion coefficient of yttrium in the Ni2Y phase,” J. Appl. Electrochem. 24, 321–324 (1994).Google Scholar
  34. 34.
    G. A. Korablev and S. D. Solov’yev, “The activation energy of diffusion in metallic systems,” Vestn. Izhevsk. Gos. Tekhn. Univ., No. 4, 128–132 (2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Bushuev
    • 1
    Email author
  • O. V. El’kin
    • 1
  • I. V. Tolstobrov
    • 1
  • A. V. Sazanov
    • 1
  • D. A. Kondrat’ev
    • 1
  1. 1.Vyatka State University, Institute of Chemistry and EcologyKirovRussia

Personalised recommendations