Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 716–721 | Cite as

Thermodynamic Analysis of the Oxidation of Radioactive Graphite in the Na2CO3–K2CO3–Sb2O3 Melt in an Argon Atmosphere

  • N. M. BarbinEmail author
  • I. A. Sidash
  • D. I. Terent’ev
  • S. G. Alekseev
Article
  • 6 Downloads

Abstract—Graphite is used as a neutron moderator and reflector. Moreover, graphite can be used as sealants and bearings in reactors. The graphite mass in a reactor is 1–2 ths t. A large amount of radioactive graphite wastes forms when graphite reactors are taken out of service. The existing methods of processing radioactive graphite are based on its isolation from the environment. These methods cannot substantially decrease the volume of radioactive graphite wastes. As a result, the processing of irradiated reactor graphite by oxidation in molten salts can be considered as an alternative reclamation method, which can decrease the volume of radioactive graphite wastes. The oxidation of radioactive graphite in the Na2CO3–K2CO3–Sb2O3 melt in an argon atmosphere is thermodynamically simulated using the TERRA software package. The data obtained are used to analyze the distribution of elements over condensed and gas phases. Heating of the system to 1073 K is found to cause the evaporation of the condensed compounds of antimony and cesium. Upon heating to 1273 K, the condensed compounds of potassium, sodium, and chlorine evaporate. Heating to 1373 K leads to the evaporation of the condensed compounds of nickel. Heating to 1673 K brings about the evaporation of the condensed compounds of uranium, calcium, and strontium. Heating to 1773 K causes the evaporation of the condensed compounds of plutonium, beryllium, americium, and europium. At temperatures above 1773 K, only a vapor–gas phase exists in the system.

Keywords:

thermodynamic simulation radioactive graphite radionuclides heating oxidation melts carbonates 

Notes

REFERENCES

  1. 1.
    V. M. Kuznetsov, H. D. Chechenov, and V. S. Nikitin, Removal of Nuclear Engineering Objects from Service (NIPKTs Voshod-A, Moscow, 2009).Google Scholar
  2. 2.
    G. V. Belov and B. G. Trusov, “Thermodynamic Simulation of Chemically Reacting Systems (MGTU, Moscow, 2013).Google Scholar
  3. 3.
    B. G. Trusov, in Proceedings of III International Conference on Theoretical and Applied Plasmachemistry (Ivanovo, 2002), p. 487.Google Scholar
  4. 4.
    N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic simulation of the behavior of radionuclides upon heating (burning) of radioactive graphite in a carbon dioxide atmosphere,” Pozharovzryivobezopasnost 23 (11), 52–60 (2014).Google Scholar
  5. 5.
    N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alekseev, “Behavior of uranium, plutonium, and americium upon heating of radioactive graphite in a carbon dioxide atmosphere,” Tehnosfernaya Bezopasnost, No. 1(2), 72–75 (2014).Google Scholar
  6. 6.
    N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alekseev, “Computer simulation of thermal processes with the participation of calcium, strontium, and cesium radionuclides upon heating of radioactive graphite in a carbon dioxide atmosphere,” Izv. Vyssh. Uchebn. Zaved., Yadern. Energetika, No. 1, 73–82 (2017).Google Scholar
  7. 7.
    N. M. Barbin, I. A. Sidash, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic analysis of thermal processes with the participation of U, Am, and Pu radionuclides upon heating of radioactive graphite in a carbon dioxide atmosphere,” Inzh. Fiz., No. 10, 27–32 (2016).Google Scholar
  8. 8.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alekseev, “Thermodynamic study of the gas phase composition over Pb + Bi melts,” Perspektivnye Materialy, No. 13, 858–864 (2011).Google Scholar
  9. 9.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alekseev, “Composition and thermophysical properties of the (Pb + Bi)–vapor system under various conditions,” Prikl. Fiz., No. 3, 22–28 (2012).Google Scholar
  10. 10.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, S. G. Alekseev, and P. S. Popel’, “Thermodynamic simulation of the evaporation of Pb + Bi melts at various pressures,” Khim. Fiz. Mezoskopiya, No. 13, 350–355 (2011).Google Scholar
  11. 11.
    N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic simulation of the behavior of radionuclides upon heating (burning) of radioactive graphite in water vapors,” Pozharo-vzryvobezopasnost, No. 10, 38–47 (2014).Google Scholar
  12. 12.
    N. M. Barbin, “Thermodynamic simulation of the thermal behavior of Li2CO3 + Na2CO3 and CaCO3 + Na2CO3 melts,” Khim. Fiz. Mezoskopiya, No. 3, 354–360 (2008).Google Scholar
  13. 13.
    N. M. Barbin, D. I. Terent’ev, A. V. Peshkov, and S. G. Alekseev, “Thermodynamic simulation of the behavior of radionuclides upon heating (burning) of radioactive graphite in an air atmosphere,” Pozharovzryvobezopasnost, No. 3, 58–67 (2014).Google Scholar
  14. 14.
    N. M. Barbin, I. V. Tikina, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic simulation of the vapor phase during the evaporation of the molten Wood alloy at various pressures,” Prikl. Fiz., No. 3, 12–16 (2014).Google Scholar
  15. 15.
    N. Barbin, D. Terentiev, S. Alexeev, and T. Barbina, “Thermodynamic modeling of the Pb + Bi melt evaporation under various pressures and temperatures,” Comput. Mater. Sci. 66, 28–33 (2013).Google Scholar
  16. 16.
    N. M. Barbin, D. I. Terentiev, and S. G. Alexeev, “Computer calculations for thermal behavior of Na2CO3–Li2CO3 melt,” J. Eng. Thermophys., No. 3, 308–314 (2011).Google Scholar
  17. 17.
    N. M. Barbin, I. V. Ovchinnikova, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic simulation of the thermal processes that take place in the molten Wood alloy under various conditions,” Prikl. Fiz., No. 3, 8–11 (2014).Google Scholar
  18. 18.
    N. M. Barbin, D. I. Terentiev, S. G. Alexeev, and T. M. Barbina, “Thermodynamic analysis of radioactive graphite reprocessing by incineration in air and oxidation in molten salt,” J. Radioanal. Nucl. Chem., No. 3, 1747–1757 (2014).Google Scholar
  19. 19.
    N. M. Barbin, D. I. Terent’ev, A. V. Peshkov, and S. G. Alekseev, “Comparative thermodynamic analysis of the burning of radioactive graphite in an air atmosphere and its oxidation in a molten salt,” Rasplavy, No. 4, 25–35 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Barbin
    • 1
    • 2
    • 3
    Email author
  • I. A. Sidash
    • 2
  • D. I. Terent’ev
    • 2
  • S. G. Alekseev
    • 2
    • 4
  1. 1.Ural State Agrarian UniversityYekaterinburgRussia
  2. 2.Ural Institute of GPS MChSYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.Scientific–Engineering Center Reliability and Resource of Large Systems and Machines, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations