Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 8, pp 700–706 | Cite as

Thermodynamic Analysis of the Oxidation of Radioactive Graphite in a Multicomponent Melt in an Inert Atmosphere

  • N. M. BarbinEmail author
  • A. M. Kobelev
  • D. I. Terent’ev
  • S. G. Alekseev
Article
  • 5 Downloads

Abstract

Graphite occupies a specific place among the entire mass of accumulated radioactive wastes. The problem of reclamation of spent graphite has not yet been solved in the world. The behavior of radioactive graphite in the multicomponent CuO–NaCl–KCl–Na2CO3–K2CO3 melt in an argon atmosphere in the temperature range 373–3273 K is studied by thermodynamic simulation with the Terra software package, which is intended for calculating the phase compositions and the thermodynamic and transport properties of arbitrary systems. The calculation was performed using a database on the properties of individual substances. At 1273 K, graphite burns to form carbon monoxide and carbon dioxide. The condensed compounds of cesium, chlorine, and uranium evaporate at 1573 K. An increase in the system temperature to 1873 K leads to the vapor pressure of condensed nickel. Condensed strontium oxide transforms into a vaporized state at 2273 K. The condensed compounds of plutonium, calcium, and europium transforms into a vaporized state at 2373 K. Condensed beryllium oxide evaporates at 2473 K. A further increase in the temperature to 2673 K leads to the evaporation of condensed americium(III) oxide. Only a vapor–gas phase is present in the isolated system in the temperature range 2673–3273 K.

Keywords:

salt melt radioactive graphite radionuclides oxidation copper oxide thermodynamic simulation 

Notes

REFERENCES

  1. 1.
    M. A. Skachek, Radioactive Components of Nuclear Power Plants: Treatment, Processing, Decontamination: Manual for Universities (Izd. Dom MEI, Moscow, 2014).Google Scholar
  2. 2.
    A. A. Tsyganov, V. I. Khvostov, E. A. Komarov, et al., “Problems of utilization of reactor graphite of industrial uranium-graphite reactors,” Izv. Tomsk. Politekh. Univ. 310 (2), 94–98 (2007).Google Scholar
  3. 3.
    Conditioning of Reactor Graphite of Decommissioned Uranium–Graphite Reactors for Disposal (Ross. Atomn. Obshch., 2017). http://www.atomic-energy.ru/articles/2016/06/08/66585. Cited September 19, 2017.Google Scholar
  4. 4.
    Rosatom Will Work out a Method for Neutralizing Radioactive Graphite from Reactors (Ross. Atomn. Obshch., 2017). http://www.atomic-energy.ru/news/2017/03/28/74156. Cited September 19, 2017.Google Scholar
  5. 5.
    Flameless Combustion of Radwaste in Molten Salts (Ross. Atomn. Obshch., 2017). http://www.atomic-energy.ru/technology/428. Cited September 19, 2017.Google Scholar
  6. 6.
    G. V. Belov and B. G. Trusov, Thermodynamic Modeling of Chemically Reactive Systems (MGTU, Moscow, 2013).Google Scholar
  7. 7.
    N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic modeling of thermal processes of actinides (U, Am, Pu) during heating of radioactive graphite in water vapor,” Radiokhim. 59 (5), 445–448 (2017).Google Scholar
  8. 8.
    N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic modeling of radionuclide behavior during heating (burning) of radioactive graphite in water vapor,” Pozharovzryvobezopasnost’ 23 (10), 38–47 (2014).Google Scholar
  9. 9.
    N. M. Barbin, A. M. Kobelev, D. I. Terent’ev, and S. G. Alekseev, “Behavior of carbon and uranium during the heating of radioactive graphite in water vapor,” Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 59 (9), 16–20 (2016).Google Scholar
  10. 10.
    A. M. Kobelev, D. I. Terent’ev, N. M. Barbin, and I. D. Oparin, “Thermodynamic modeling of the behavior of uranium, plutonium and americium in the burning of radioactive graphite in water vapor,” Tekhnosfer. Bezop., No. 1(2), 34–39 (2014).Google Scholar
  11. 11.
    N. Barbin, A. Kobelev, D. Terent’ev, and S. Alekseev, “Thermophysical characteristics of radioactive graphite–water vapor system,” MATEC Web of Conferences 115 (2017).Google Scholar
  12. 12.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alekseev, “Thermodynamic study of the composition of the gas phase over the melts of the Pb–Bi system,” Perspekt. Mater., No. 13, 858–864 (2011).Google Scholar
  13. 13.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, and S. G. Alekseev, “Composition and thermophysical properties of the melt system (Pb + Bi) pairs under various conditions,” Prikl. Fiz., No. 3, 32–38.Google Scholar
  14. 14.
    D. I. Terent’ev, N. M. Barbin, A. V. Borisenko, S. G. Alekseev, and P. S. Popel’, “Thermodynamic modeling of evaporation of Pb–Bi melts at various pressures,” Khim. Fiz. Mezosk. 13 (3), 350–355.Google Scholar
  15. 15.
    N. M. Barbin, “Thermodynamic modeling of the thermal behavior of the Li2CO3 + Na2CO3 and CaCO3+ Na2CO3 melts,” Khim. Fiz. Mezosk. 10 (3), 354–360.Google Scholar
  16. 16.
    N. M. Barbin, D. I. Terent’ev, A. V. Peshkov, and S. G. Aleksev, “Thermodynamic modeling of radionuclides behavior during heating (burning) of radioactive graphite in air atmosphere,” Pozharovzryvobezopasnost’ 23 (3), 58–67 (2014).Google Scholar
  17. 17.
    N. M. Barbin, I. V. Tikina, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic modeling of the vapor phase during evaporation of the molten Wood alloy at different pressures,” Prikl. Fiz., No. 3, 12–16 (2014).Google Scholar
  18. 18.
    N. Barbin, D. Terentiev, S. Alexeev, and T. Barbina, “Thermodynamic modeling of the Pb–Bi melt evaporation under various pressures and temperatures,” Comput. Mater. Sci. 66, 28–33 (2013).Google Scholar
  19. 19.
    N. M. Barbin, D. I. Terentiev, and S. G. Alexeev, “Computer calculations for thermal behavior of Na2CO3–Li2CO3 melt,” J. Eng. Thermophys. 20 (3), 308–314 (2011).Google Scholar
  20. 20.
    N. M. Barbin, I. V. Ovchinnikova, D. I. Terent’ev, and S. G. Alekseev, “Thermodynamic modeling of thermal processes occurring in the melted Wood alloy under various conditions,” Prikl. Fiz., No. 3, 8–11 (2014).Google Scholar
  21. 21.
    N. M. Barbin, D. I. Terentiev, S. G. Alexeev, and T. M. Barbina, “Thermodynamic analysis of radioactive graphite reprocessing by incineration in air and oxidation in molten salt,” J. Radioanalyt. Nuclear Chem. 299 (3), 1747–1757 (2014).Google Scholar
  22. 22.
    N. M. Barbin, D. I. Terent’ev, A. V. Peshkov, and S. G. Alekseev, “Comparative thermodynamic analysis of the processes of processing radioactive graphite by burning in an air atmosphere and oxidation in a salt melt,” Rasplavy 4, 25–35 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. M. Barbin
    • 1
    • 2
    • 3
    Email author
  • A. M. Kobelev
    • 2
  • D. I. Terent’ev
    • 2
  • S. G. Alekseev
    • 2
    • 4
  1. 1.Ural State Agrarian UniversityYekaterinburgRussia
  2. 2.Ural Institute of GPS MChSYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia
  4. 4.Scientific–Engineering Center Reliability and Resource of Large Systems and Machines, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations