Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 7, pp 625–632 | Cite as

Effect of the Thermomechanical Treatment Conditions on the Consolidation, the Structure, and the Mechanical Properties of Bulk Al–Mg–C Nanocomposites

  • A. V. AborkinEmail author
  • M. I. AlymovEmail author
  • A. V. Sobol’kovEmail author
  • K. S. Khor’kovEmail author
  • D. M. BabinEmail author
Article
  • 41 Downloads

Abstract

The effect of the conditions of sintering under pressure (temperature, pressure) of mechanically synthesized Al–Mg–C nanocomposite powders on consolidation and the evolution of the structure–phase composition has been studied. The data on the mechanical properties of the prepared bulk nanocomposites are presented. It is found that the hardening of the material results from the joint action of the contributions of the nanostructuring of the matrix material, precipitation hardening due to the precipitation of the Al4C3 phase, and precipitation hardening with nanocrystalline graphite particles; i.e., the hardening obeys the Hall–Petch and Orowan mechanisms. The specific strength of the samples is dependent on the consolidation temperature and the graphite content in a charge and varies within the range 15.7–24.5 km.

Keywords:

nanocomposite powder consolidation structure–phase composition microhardness ultimate strength aluminum nanocrystalline graphite specific strength. 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 15-08-08032 a.

REFERENCES

  1. 1.
    J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, “Reinforcement with graphene nanosheets in aluminum matrix composites,” Scripta Materialia 66, 594–597 (2012).CrossRefGoogle Scholar
  2. 2.
    S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, S. Kapoor, and N. Koratkar, “Graphene–aluminum nanocomposites,” Mater. Sci. Eng. A 528, 7933–7937 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma, “Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion,” Mater. Sci. Eng. A 658, 8–15 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Kwon, J. Mondal, K. A. al Ogab, V. Sammelselg, M. Takamichi, A. Kawaski, and M. Leparoux, “Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy,” J. Alloys Compd. 698, 807–813 (2017).CrossRefGoogle Scholar
  5. 5.
    R. Pèrez-Bustamante, I. Estrada-Guel, W. Antùmez-Flores, M. Miki-Yoshida, P. J. Ferreira, and R. Martínez-Sànchez, “Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes,” J. Alloys Compd. 450, 323–326 (2008).Google Scholar
  6. 6.
    M. Majid, G.H. Majzoobi, G. A. Noozad, A. Reihani, S. Z. Mortazavi, and M. S. Gorji, “Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion,” Rare Met. 31, 372–378 (2012).CrossRefGoogle Scholar
  7. 7.
    C. R. Bradbury, J. K. Gomon, L. Kollo, H. Kwon, and M. Leparoux, “Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites,” J. Alloys Compd. 585, 362–367 (2014).CrossRefGoogle Scholar
  8. 8.
    R. Pèrez-Bustamante, M.J. Gonzàlez-Ibarra, J. Gonzàlez-Cantù, I. Estrada-Guel, J. M. Herrera-Ramírez, M. Miki-Yoshida, and R. Martínez-Sànchez, “AA2024-CNTs composites by milling process after T6-temper condition,” J. Alloys Compd. 536S, 17–20 (2012).Google Scholar
  9. 9.
    K. Kallip, M. Leparoux, K. A. al Ogab, S. Clerc, G. Deguilhem, Y. Arroyo, and H. Kwon, “Investigation of different carbon nanotube reinforcements for fabricating bulk AlMg5 matrix nanocomposites,” J. Alloys Compd. 646, 710–718 (2015).CrossRefGoogle Scholar
  10. 10.
    A. V. Aborkin, A. I. Elkin, and D. M. Babin, “Features of the Variation of Energy-Power Parameters, Temperature, and Hydrostatic Pressure under the Continuous Extrusion of a Noncompact Aluminum Material,” Russian Journal of Non-Ferrous Metals 57 (1), 14–18 (2016).Google Scholar
  11. 11.
    V. V. Berbentsev, V. I. Bugakov, V. E. Vaganov, M. I. Alymov, and A. V. Aborkin, “Plastic deformation of the plastic matrix–hard inclusion composite system during high-temperature gas extrusion,” Rus. Metall. (Metally), No. 11, 1083–1086 (2016).Google Scholar
  12. 12.
    D. Poiriera, R. Gauvin, and R. A. L. Drew, “Structural charactyeristics of a mechanically milled carbon nanotube/aluminum mixture,” Composites A 40, 1482–1489 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Y. Liu, S. J. Xu, B. L. Xiao, P. Xue, W. G. Wang, and Z. Y. Ma, “Effect of ball-milling time on mechanical properties of carbon nanotubes reinforced aluminum matrix composites,” Composites A 43, 2161–2168 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Vittori Antisari, A. Montone, N. Jovic, E. Piscoriello, C. Alvani, and L. Pilloni, “Low energy pure shear milling: a method for the preparation of graphite nano-sheets,” Scripta Materialia 55, 1047–1050 (2006).CrossRefGoogle Scholar
  15. 15.
    R. Janot and D. Guerard, “Ball-milling: the behavior of graphite as a function of the dispersal media,” Carbon 40, 2887–2896 (2002).CrossRefGoogle Scholar
  16. 16.
    T. Xing, L. H. Li, L. Hou, X. Hu, S. Zhou, R. Peter, M. Petravic, and Y. Chen, “Disorder in ball-milled graphite revealed by Raman spectroscopy,” Carbon 57, 515–519 (2013).CrossRefGoogle Scholar
  17. 17.
    A. V. Aborkin, I. A. Evdokimov, V. E. Vaganov, M. I. Alymov, D. V. Abramov, and K. A. Khor’kov, “Influence of Mechanical Activation Mode on Morphology and Phase Composition of Al–2Mg–nC Nanostructured Composite Material,” Nanotechnologies in Russia 11 (5–6), 297–304 (2016).Google Scholar
  18. 18.
    A. V. Aborkin, M. I. Alymov, A. V. Kireev, A. I. Elkin, and A. V. Sobol’kov, “Mechanically Synthesized Composite Powder Based on AMg2 Alloy with Graphite Additives: Particle Size Distribution and Structural-Phase Composition,” Nanotechnologies in Russia 12 (7–8), 395–399 (2017).Google Scholar
  19. 19.
    E. P. Ahalunov, M. A. Shvedov, and I. V. Arkhipov, “Synthesis of dispersoids during reaction mechanical carbon alloying of the powder aluminum,” Vestnik Chuvash Univer., No. 2, 165–172 (2014).Google Scholar
  20. 20.
    B. B. Chen, L. Jia, S. Li, H. Imai, M. Takahashi, and K. Komdoh, “In situ synthesized Al4C3 nanorods with excellent strengthening effect in aluminum matrix composites,” Advanc. Eng. Mater. 16 (8), 972–975 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vladimir State UniversityVladimirRussia
  2. 2.Insitute of Structural Macrokinetics and Materials Sciences, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations