Skip to main content
Log in

Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: II. Model for Calculating the Hall–Petch Relation Parameters

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A model is developed to calculate the Hall–Petch relation parameters for the submicrocrystalline (SMC) metals fabricated by severe plastic deformation (SPD) methods. The model is based on the assumption that the flow stress in SMC metals includes both conventional contributions (caused by lattice dislocations, impurity atoms, etc.) and a contribution related to the long-range internal stress fields created by the SPD-induced defects distributed over grain boundaries. Equations are derived to calculate the Hall–Petch relation parameters as functions of the strain and the strain rate. The results calculated by the derived equations agree well with the experimental data. The low resistance of grain boundaries to the motion of grain boundaries in SMC materials (see part I of this work) is found to be related to a violation of the Hall–Petch relation in SMC metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Chuvil’deev, Nonequilibrium Grain Boundaries in Metals. Theory and Applications (Fizmatlit, Moscow, 2004).

    Google Scholar 

  2. V. M. Segal, I. J. Beyerlein, C. N. Tome, V. N. Chuvil’deev, and V. I. Kopylov, Fundamentals and Engineering of Severe Plastic Deformation (Nova Sci. Publ., New York, 2010).

    Google Scholar 

  3. V. N. Chuvil’deev, A. V. Nokhrin, V. I. Kopylov, Yu.G. Lopatin, N. V. Melekhin, O. E. Pirozhnikova, M. M. Myshlyaev, and N. V. Sakharov, “Conditions for the applicability of the Hall–Petch relation for nanoand microcrystalline materials produced by severe plastic deformation,” Deform. Razr. Mater., No. 12, 17–25 (2009).

    Google Scholar 

  4. A. Mishra, B. K. Kad, F. Gregori, and M. A. Meyers, “Microstructural evolution in copper subjected to severe plastic deformation: experiments and analysis,” Acta Materialia 65, 13–28 (2007).

    Article  Google Scholar 

  5. W. Yuan, S. K. Panigrahi, J.-Q. Su, and R. S. Mishra, “Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy,” Scripta Materialia 65, 994–997 (2011).

    Article  Google Scholar 

  6. M. A. Munoz-Morris, O. C. Garcia, and D. G. Morris, “Mechanical behavior of dilute Al–Mg alloy processed by equal channel angular pressing,” Scripta Mater. 48 (3), 213–218 (2003).

    Article  Google Scholar 

  7. E. V. Kozlov, A. M. Glezer, N. A. Koneva, N. A. Popova, and I. A. Kurzina, Fundamentals of the Plastic Deformation of Nanostructured Materials, Ed. by A. M. Glezer (Fizmatlit, Moscow, 2016).

  8. R. A. Andrievskii and A. M. Glezer, “Size effects in nanocrystalline materials: II. Mechanical and physical properties,” Phys. Met. Metallogr. 89 (1), 85–95 (2000).

    Google Scholar 

  9. V. A. Pozdnyakov, “Mechanisms of plastic deformation and the anomalies of the Hall–Petch dependence in metallic nanocrystalline materials,” Phys. Met. Metallogr. 96 (1), 105–119 (2003).

    Google Scholar 

  10. Y. T. Zhu and T. G. Langdon, “Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials,” Mater. Sci. Eng. A. 409 (1–2), 234–242 (2005).

    Article  Google Scholar 

  11. W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong, and J. D. Lee, “Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing,” Acta Mater. 51 (11), 3293–3307 (2003).

    Article  Google Scholar 

  12. A. Yamashita, Z. Horita, and T. G. Langdon, “Improving the mechanical properties of magnesium and magnesium alloy through severe plastic deformation,” Mater. Sci. Eng. A 300 (1–2), 142–147 (2001).

    Article  Google Scholar 

  13. M. R. Barnett, Z. Keshavarz, A. G. Beer, and D. Atwell, “Influence of grain size on the compressive deformation of wrought Mg–3Al–1Z,” Acta Materialia 52 (17), 5093–5103 (2004).

    Article  Google Scholar 

  14. M. I. Goldshtein, V. S. Litvinov, and B. M. Bronfin, Physical Metallurgy of High-Strength Alloys (Metallurgiya, Moscow, 1986).

    Google Scholar 

  15. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967).

    Google Scholar 

  16. V. N. Chuvil’deev, O. E. Pirozhnikova, and A. V. Petryaev, “Micromechanisms of grain-boundary recovery upon annealing after deformation: I. Recovery of diffusional properties of grain boundaries,” Phys. Met. Metallogr. 92 (6), 540–545 (2001).

    Google Scholar 

  17. A. V. Petryaev and V. N. Chuvil’deev, “Micromechanisms of grain-boundary recovery upon annealing after deformation: II. Recovery of yield strength in finegrained materials,” Phys. Met. Metallogr. 92 (6), 546–552 (2001).

    Google Scholar 

  18. V. N. Chuvil’deev, A. V. Nokhrin, V. I. Kopylov, M. Yu. Gryaznov, O. E. Pirozhnikova, and Yu. G. Lopatin, “Effect of a simultaneous increase in strength and plasticity at room temperature in the nano-and microcrystalline metals fabricated by severe plastic deformation. Part I. Model for calculating the limiting strength and plasticity at room temperature,” Materialoved., No. 12, 2–10 (2010).

    Google Scholar 

  19. Y. Estrin, H. S. Kim, and F. R. N. Nabarro, “A comment on the role of Frank-Read sources in plasticity of nanomaterials,” Acta Mater. 55, 6401–6407 (2007).

    Article  Google Scholar 

  20. V. I. Chuvil’deev, V. I. Kopylov, A. V. Nokhrin, I. M. Makarov, and Yu. G. Lopatin, “Dispersion limit for ECA deformation: effect of temperature,” Dokl. Ross. Akad. Nauk 369 (3), 332–338 (2004).

    Google Scholar 

  21. V. I. Chuvil’deev and V. I. Kopylov, “Grain refinement limit upon equal-channel angular deformation,” Russ. Metall. (Metally), No. 1, 22–35 (2004).

    Google Scholar 

  22. V. N. Perevezentsev, V. V. Rybin, and V. N. Chuvil’deev, “The theory of structurual superplastisity,” Acta Met. Mater. 40 (5), 887–923 (1992).

    Article  Google Scholar 

  23. V. N. Chuvil’deev, “Micromechanism of grain-boundary self-diffusion in metals: II. Model of grain-boundary self-diffusion in boundaries,” Phys. Met. Metallogr. 81 (4), 387–392 (1996).

    Google Scholar 

  24. V. N. Chuvil’deev and O. E. Pirozhnikova, “Micromechanism of grain-boundary self-diffusion in metals: III. Effect of lattice dislocation fluxes on the diffusion properties of grain boundaries,” Phys. Met. Metallogr. 81 (7), 71–77 (1996).

    Google Scholar 

  25. Ultrafine Grain in Metals, Ed. by L. K. Gordienko (Metallurgiya, Moscow, 1973).

  26. R. Z. Valiev and T.G. Langdon, “Principles of equalchannel angular pressing as a processing tool for grain refinement,” Prog. Mater. Sci. 51 (8), 881–981 (2006).

    Article  Google Scholar 

  27. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Mater. Sci. 53 (6), 893–979 (2008).

    Article  Google Scholar 

  28. J. De Messemaeker, B. Verlinden, and J. Van Humbeeck, “On the strength of boundaries in submicron IF steel,” Mater. Lett. 58 (29), 3782 (2004).

    Article  Google Scholar 

  29. I. Gutierrez-Urrutia, M. A. Munoz-Morris, and D. G. Morris, “Contribution of microstructural parameters to strengthening in a ultrafine-grained Al–7% Si alloy processed by severe deformation,” Acta Mater. 55, 1319–1330 (2000).

    Article  Google Scholar 

  30. M. V. Degtyarev, T. I. Chashchukhina, L. M. Voronova, A. M. Patselov, and V. P. Pilyugin, “Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion,” Acta Mater. 55 (18), 6039–6050 (2007).

    Article  Google Scholar 

  31. W. Wei, G. Chen, and J. Wang, “Microstructure and tensile properties of ultrafine grained copper processed by equal-channel angular pressing,” Rare Metals 25 (6), 697–703 (2006).

    Article  Google Scholar 

  32. G. G. Frost and M. F. Eshbi, Deformation-Mechanism Maps (Pergamon, Oxford, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nokhrin.

Additional information

Original Russian Text © V.N. Chuvil’deev, A.V. Nokhrin, M.M. Myshlyaev, V.I. Kopylov, Yu.G. Lopatin, N.V. Melekhin, A.V. Piskunov, A.A. Bobrov, O.E. Pirozhnikova, 2018, published in Metally, 2018, No. 3, pp. 73–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Myshlyaev, M.M. et al. Effect of Recovery and Recrystallization on the Hall–Petch Relation Parameters in Submicrocrystalline Metals: II. Model for Calculating the Hall–Petch Relation Parameters. Russ. Metall. 2018, 487–499 (2018). https://doi.org/10.1134/S0036029518050051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029518050051

Keywords

Navigation