Advertisement

Russian Metallurgy (Metally)

, Volume 2018, Issue 2, pp 139–148 | Cite as

Synthesis of an Aluminum–Erbium Master Alloy from Chloride–Fluoride Melts

  • Ya. I. Kosov
  • V. Yu. Bazhin
Article
  • 8 Downloads

Abstract

Available foreign power-intensive technologies and the absence of domestic production technologies for aluminum–erbium master alloys intended for improving the physicomechanical properties of aluminum alloys make the development of aluminothermic reduction technology of chloride–fluoride melts actual for manufacturing erbium compounds. Thermodynamic analysis of reduction processes is performed for various erbium compounds. Taking into account the physical and chemical properties of erbium compounds, a starting compound, namely, erbium fluoride is found to be preferable. The aluminothermic reduction of the compound from its mixture with sodium fluoride and potassium chloride to form the Al3Er intermetallic compound is characterized by a high thermodynamic probability. Since data on thermodynamic parameters for erbium complex compound are scanty, they are determined by an indirect method. Experimental data on the aluminothermic preparation of an Al–Er master alloy at temperatures of 750–900°C using melts differing in the ErF3/NaF ratio and the KCl content are reported; the structure and the phase composition of the prepared master alloy are studied. The phase composition of the flux used for the preparation of the Al–Er master alloy is determined.

Keywords

master alloy aluminum–erbium aluminothermic reduction flux thermodynamics microstructure intermetallic compound Al3Er 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Karnesky, D. C. Dunand, and D. N. Seidman, ”Evolution of nanoscale precipitates in Al microalloyed with Sc and Er”, Acta Mater. 57, 4022–4031 (2009).CrossRefGoogle Scholar
  2. 2.
    Z. R. Nie, J. B. Fu, J. X. Zou, T. N. Jin, J. J. Yang, G. F. Xu, H. Q. Ruan, and T. Y. Zuo, “Advanced aluminum alloys containing rare-earth erbium”, Mater. Forum 28, 197–201 (2004).Google Scholar
  3. 3.
    S. P. Wen, K. Y. Gao, Y. Li, H. Huang, and Z. R. Nie, “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scripta Mater. 65, 592–595 (2011).CrossRefGoogle Scholar
  4. 4.
    Ya. I. Kosov, “Advanced compositions of aluminum alloys and master alloys,” Mezhd. Nauchn.-Izd. Zh., No. 11 (53), Part 4, 73–77 (2016).Google Scholar
  5. 5.
    A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,“ Metal Sci. Heat Treat., 58 (9–10), 537–542 (2017).CrossRefGoogle Scholar
  6. 6.
    G.-F. Xu, Sh.-Zh. Mou, J.-J. Yang, and T.-N. Jin, Trans. Nonfer. Met. Soc. China 16, 598–603 (2006).CrossRefGoogle Scholar
  7. 7.
    Z. G. Wu, M. Song, and Y. H. He, Mater. Sci. Eng. A 504, 183–187 (2009).CrossRefGoogle Scholar
  8. 8.
    V. M. Skachkov and S. P. Yatsenko, “Obtaining of Sc, Zr, Hf and Y base metals on the basis of aluminum by method of high-temperature exchange reactions in salt melts,” Non-Ferrous Metals, No. 3, 81–86 (2014).Google Scholar
  9. 9.
    V. I. Napalkov, S. V. Makhov, B. L. Bobryshev, and V. S. Moiseev, Physicochemical Processes for Refining Aluminum and Its Alloys (Teplotekhnik, Moscow, 2011).Google Scholar
  10. 10.
    R. E. Thoma, “Phase diagrams of binary and ternary fluoride systems,” in: J. Braunstein, G. Mamantov, G. P. Smith, Advances in Molten Salt Chemistry (Plenum, New York, 1975), Vol. 3, pp. 275–455.CrossRefGoogle Scholar
  11. 11.
    A. A. Zhukovskii and L. A. Shvartzman, Physical Chemistry (Metallurgiya, Moscow, 1976).Google Scholar
  12. 12.
    K. A Gschneidner, Jr., J.-C. G. Bunzli, and V. K. Pecharsky, Handbook on the Physics and Chemistry of Rare Earths (Elsevier, 2003), Vol.33.Google Scholar
  13. 13.
    V. I. Moskvitin, S. V. Makhov, and V. I. Napalkov, ”Study of interaction of scandium oxide with cryolite melts,” Tekhnol. Legkikh Splavov, No. 2, 33–36 (1990).Google Scholar
  14. 14.
    V. I. Moskvitin, D. A. Popov, and S. V. Makhov, “Thermodynamic foundations of aluminothermic reduction of zirconium from ZrO2 on chloride–fluoride salt melts,” Tsvetn. Met., No. 4, 43–46 (2012).Google Scholar
  15. 15.
    N. Su, X. Wang, Y. Wang, W. Jiang, and H. Liu, “Grain refinement in an Al–Er alloy during accumulative continuous extrusion forming,” J. Alloys Comp. 680, 283–290 (2016).CrossRefGoogle Scholar
  16. 16.
    L. F. Mondolfo, Aluminum Alloys: Structure and Properties (Butterworths, London, 1976).Google Scholar
  17. 17.
    H. Li, Z. Gao, H. Yin, H. Jiang, X. Su, and J. Bin, “Effect of Er and Zr additions on precipitation and recrystallization of pure aluminum,” Scr. Mater. 68, 59–62 (2013).CrossRefGoogle Scholar
  18. 18.
    L. Ji, Y.-B. Kang, P. Chartrand, and C. D. Fuerst, “Thermodynamic evaluation and optimization of Al?Gd, Al–Tb, Al–Dy, Al–Ho and Al–Er systems using a modified quasichemical model for the liquid,” CALPHAD 34, 456–466 (2010).CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, G. Kunyuan, W. Shengping, H. Hui, W. Wei, Zh. Zhao-Wei, N. Zuoren, and Zh. Dejing, “Determination of Er and Yb solvuses and trialuminide nucleation in Al–Er and Al–Yb alloys,” J. Alloys Compd. 590, 526–534 (2014).CrossRefGoogle Scholar
  20. 20.
    M. C. Gao, A. D. Rollett, and M. Widom, Phys. Rev. B 75, 1741201–16 (2007).Google Scholar
  21. 21.
    M. Zugang, D. N. Seidman, and C. Wolverton, “Firstprinciples phase stability, magnetic properties and solubility in aluminum-rare-earth (Al–RE) alloys and compound,” Acta Mater. 59, 3659–3666 (2011).CrossRefGoogle Scholar
  22. 22.
    S. V. Aleksandrovskii, V. M. Sizyakov, D. V. Kutsenko, and A. X. Ratner, Metallothermic Methods for Manufacturing High-Purity Scandium and Its Master Alloys (Ruda Metally, Moscow, 2004).Google Scholar
  23. 23.
    D. V. Kutsenko, “Utilization of intermediate materials of scandium and scandium master alloys production, Zapiski Gornogo Instituta 155, Part 1, 189–192 (2003).Google Scholar
  24. 24.
    L. A. Zhukova, O. P. Aksyonova, and A. A. Zhukov, “Melts microheterogeneity in binary metallic systems having eutectic and monotectic transformations,” J. Phys.: Conf. Ser. 98 (3), 032015 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.St. Petersburg Mining UniversitySt. PetersburgRussia

Personalised recommendations