Russian Metallurgy (Metally)

, Volume 2017, Issue 10, pp 879–883 | Cite as

Fracture mechanism of coronal teenage dentin

  • P. E. PanfilovEmail author
  • A. V. Kabanova
  • I. N. Borodin
  • J. Guo
  • Z. Zang
Applied Problems of Strength and Plasticity


The structure of coronal teenage dentin and the development of cracks in it are studied on microand nanolevels. The material is found to fail according to a ductile mechanism on a microlelvel and according to a ductile–brittle mechanism on a nanoscale. This behavior is similar to the failure of a polyethylene film and rubber, when significant elastic and irreversible deformation precedes crack growth. The viscoelastic behavior can be considered as the reaction of dentin to an applied mechanical load.


coronal teenage dentin deformation localization region plastic zone crack transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. McClintock and A. Argon, Mechanical Behavior of Materials (Addison-Wesley, Reading, Mass., 1966).Google Scholar
  2. 2.
    R. Honeycombe, The Plastic Deformation of Metals (Cambridge University Press., Cambridge, 1968).Google Scholar
  3. 3.
    A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, 2013).CrossRefGoogle Scholar
  4. 4.
    G. W. Marshall, “Dentin: microstructure and characterization,” Quintessence Int. 24 (9), 606–617 (1993).Google Scholar
  5. 5.
    R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanism,” Biomaterials 24, 3955–3968 (2003).CrossRefGoogle Scholar
  6. 6.
    J. H. Kinney, M. Balooch, G. W. Marshall, and S. J. Marshall, “A micromechanics model of the elastic properties of human dentin,” Arch. Oral Biology 44, 813–822 (1999).CrossRefGoogle Scholar
  7. 7.
    D. V. Zaitsev, S. S. Grigor’ev, O. V. Antonova, and P. E. Panfilov, “Deformation and failure of human dentin,” Deform. Razr. Mater., No. 6, 37–43 (2011).Google Scholar
  8. 8.
    J. J. Kruzic, R. K. Nalla, J. H. Kinney, and R. O. Ritchie, “Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration,” Biomaterials 24, 5209–5221 (2003).CrossRefGoogle Scholar
  9. 9.
    D. Zaytsev, S. Grigoriev, and P. Panfilov, “Deformation behavior of root dentin under Sjögren’s syndrome,” Mater. Lett. 65, 2435–2438 (2011).CrossRefGoogle Scholar
  10. 10.
    I. M. Robertson and H. K. Burnbaum, “An HVEM study of hydrogen effects on the deformation and fracture of nickel,” Acta Metall. 32 (3), 353–366 (1986).CrossRefGoogle Scholar
  11. 11.
    S. M. Ohr, “An electron-microscopy study of crack tip deformation and its impact on the dislocation theory fracture,” Mater. Sci. Eng. 72 (1), 1–35 (1985).CrossRefGoogle Scholar
  12. 12.
    P. Panfilov, V. Novgorodov, and G. Baturin, “An evolution of microcracks in thin foil of face-centred cubic metal,” J. Mater. Sci. Lett. 11, 229–232 (1992).CrossRefGoogle Scholar
  13. 13.
    V. E. Arana-Chavez and L. F. Massa, “Odontoblasts: the cells forming and maintaining dentine,” Int. J. Biochemistry & Cell Biology 36, 1367–1373 (2004).CrossRefGoogle Scholar
  14. 14.
    A. L. Volynskii and N. F. Bakeev, Solvent Crazing of Polymers (Elservier, Amsterdam, 1995).Google Scholar
  15. 15.
    A. L. Volynskii, L. M. Yarysheva, and N. F. Bakeev, “Crazing of polymers in liquid media—a universal, continuous method of adding modifiers to polymer fibers,” Fibr. Chem. 28 (2), 138–141 (2006).CrossRefGoogle Scholar
  16. 16.
    J. F. Nott, Fundamentals of Fracture Mechanics (Metallurgiya, Moscow, 1987).Google Scholar
  17. 17.
    P. Panfilov, D. Zaytsev, O. V. Antonova, V. Alpatova, and L. P. Kiselnikova, “The difference of structural state and deformation behavior between teenage and mature human dentin,” Int. J. Biomater. 2016 (2016). doi 10.1155/2016/6073051vGoogle Scholar
  18. 18.
    D. Zaytsev and P. Panfilov, “Influences of the sample shape and compression temperature on the deformation behavior and mechanical properties of human dentin,” Mater. Sci. Eng. C 43, 607–613 (2014).CrossRefGoogle Scholar
  19. 19.
    D. Zaytsev, A. S. Ivashov, J. V. Mandra, and P. Panfilov, “On the deformation behavior of human dentin under compression and bending,” Mater. Sci. Eng. C 41, 83–90 (2014).CrossRefGoogle Scholar
  20. 20.
    D. Zaytsev and P. Panfilov, “Deformation behavior of human dentin in liquid nitrogen: a diametral compression test,” Mater. Sci. Eng. C 42, 48–51 (2014).CrossRefGoogle Scholar
  21. 21.
    P. Panfilov, A. Yermakov, and G. Baturin, “The cause of cleavage in iridium single crystals,” J. Mater. Sci. Lett. 9, 1162–1164 (1990).CrossRefGoogle Scholar
  22. 22.
    D. Zaytsev, S. Grigor’ev, and P. Panfilov, “Human dentin as an object of inquiry of physical metallurgy,” Probl. Stomatolog. 3, 3–14 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • P. E. Panfilov
    • 1
    Email author
  • A. V. Kabanova
    • 1
  • I. N. Borodin
    • 1
  • J. Guo
    • 2
  • Z. Zang
    • 2
  1. 1.Institute of Natural Sciences and MathematicsUral State Federal UniversityYekaterinburgRussia
  2. 2.Erich Schmid Institute of Materials ScienceLeobenAustria

Personalised recommendations