Russian Metallurgy (Metally)

, Volume 2017, Issue 10, pp 858–861 | Cite as

Effect of chromium on the structure evolution in single-phase Ni–Cr alloys during high-pressure torsion

  • Yu. G. Krasnoperova
  • M. V. Degtyarev
  • T. I. Chashchukhina
  • L. M. Voronova
Structure and Properties of the Deformed State


The evolution of the structure and the hardness of single-phase Ni–Cr alloys with 2–12.5 at % Cr is studied during high-pressure torsion. It is established that the hardness of the alloys, unlike pure nickel, continuously increases in the entire true strain range 0.2–12. Alloying with chromium is shown to substantially inhibit the formation of a submicrocrystalline structure and to enhance the refinement of microcrystallites.


high-pressure torsion Ni–Cr alloy microstructure hardness dynamic recovery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. A. Smirnova, V. I. Levit, V. P. Pilyugin, R. I. Kuznetsov, L. S. Davydova, and V. A. Sazonova, “Evolution of the structure of fcc single crystals upon severe plastic deformation,” Fiz. Met. Metalloved., 61 (6), 1170–1177 (1986).Google Scholar
  2. 2.
    A. Hosokawa, S. Il, and K. Tsuchiya, “Work hardening and microstructural development during high-pressure torsion in pure iron,” Mater. Trans. 55 (7), 1097–1103 (2014).CrossRefGoogle Scholar
  3. 3.
    A. V. Ganeev, R. K. Islamgaliev, and R. Z. Valiev, “Refinement of tungsten microstructure upon severe plastic deformation,” Phys. Met. Metallogr. 115 (2) 135–141 (2014).CrossRefGoogle Scholar
  4. 4.
    I. G. Brodova, I. G. Shirinkina, and A. N. Petrova, “Features of structure refinement of aluminium alloys with transition metals,” Lett. Mater. 1 (1) 32–35 (2011).CrossRefGoogle Scholar
  5. 5.
    I. G. Brodova, I. G. Shirinkina, A. N. Petrova, V. P. Pilyugin, and T. P. Tolmachev, “Structure of an AMts aluminum alloy after high-pressure torsion in liquid nitrogen,” Phys. Met. Metallogr. 114 (8) 687–692 (2013).CrossRefGoogle Scholar
  6. 6.
    T. M. Gapontseva, V. P. Pilyugin, L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, and A. M. Patselov, “The change in the structure and the hardness of cobalt upon room-and low-temperature deformation under pressure,” Deform. Razr. Mater., No. 8, 24–27 (2006).Google Scholar
  7. 7.
    J. G. Sevillano, “Geometrically necessary twins and their associated size effects,” Scr. Mater. 59, 135–138 (2008).CrossRefGoogle Scholar
  8. 8.
    C. X. Huang, K. Wang, S. D. Wu, Z. F. Zhang, G. Y. Li, and S. X. Li, “Deformation twinning in polycrystalline copper at room temperature and low strain rate,” Acta Mater. 54, 655–665 (2006).CrossRefGoogle Scholar
  9. 9.
    A. M. Vlasova, V. P. Pilyugin, B. A. Greenberg, O. V. Antonova, “Structural changes in polycrystalline magnesium after megaplastic deformation (high-pressure torsion),” Deform. Razr. Mater., No. 7, 2–9 (2015).Google Scholar
  10. 10.
    A. M. Patselov, M. V. Degtyarev, V. P. Pilyugin, T. I. Chashchukhina, L. M. Voronova, E. G. Chernyshev, and G. G. Taluts, “Stabilization of the ε phase of the 12Kh18N10T steel upon shear under pressure,” Phys. Met. Metallogr. 98 (2), 88–95 (2004).Google Scholar
  11. 11.
    A. G. Illarionov, S. L. Demakov, S. I. Stepanov, and S. M. Illarionova, “Structural and phase transformations in a quenched two-phase titanium alloy upon cold deformation and subsequent annealing,” Phys. Met. Metallogr. 116 (3) 265–271 (2015).CrossRefGoogle Scholar
  12. 12.
    S. V. Dobatkin, J. Zrník, and I. Mamuzić, “Nanostructures by severe plastic deformation of steels: advantages and problems,” Metalurgiya, 45 (4), 313–321 (2006).Google Scholar
  13. 13.
    L. M. Voronova, M. V. Degtyarev, T. I. Chashchukhina, Yu.G. Krasnoperova, and N. N. Resnina, “Effect of dynamic recovery on structure formation in nickel upon high-pressure torsion and subsequent annealing,” Mater. Sci. Eng. A 639, 155–164 (2015).CrossRefGoogle Scholar
  14. 14.
    V. P. Pilyugin, T. M. Gapontseva, T. I. Chashchukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105 (4) 409–419 (2008).CrossRefGoogle Scholar
  15. 15.
    D. P. Rodionov, I. V. Gervas’eva, and Yu. V. Khlebnikova, Textured Nickel-Alloy-Based Substrates (RIO UrO RAN, Yekaterinburg, 2012).Google Scholar
  16. 16.
    V. I. Trefilov, Yu.V. Mil’man, and S. A. Firstov, Physical Fundamentals of the Strength of Refractory Materials (Naukova Dumka, Kiev, 1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Yu. G. Krasnoperova
    • 1
  • M. V. Degtyarev
    • 1
  • T. I. Chashchukhina
    • 1
  • L. M. Voronova
    • 1
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations