Russian Metallurgy (Metally)

, Volume 2016, Issue 11, pp 1035–1041 | Cite as

Improvement of the linear polarization resistance method for testing steel corrosion inhibitors

  • A. T. Faritov
  • Yu. G. Rozhdestvenskii
  • S. A. Yamshchikova
  • E. R. Minnikhanova
  • A. S. Tyusenkov


The linear polarization resistance method is used to improve the technique of corrosion control in liquid conducting according to GOST 9.514–99 (General Corrosion and Aging Protection System. Corrosion Inhibitors for Metals in Water Systems. Electrochemical Method of Determining the Protective Ability). Corrosion monitoring is shown to be performed by electronic devices with real-time data transfer to industrial controllers and SCADA systems.


linear polarization resistance corrosion rate inhibitor Monicor corrosion rate indicator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Corrosion rate monitoring by the linear polarization resistance method,” in Advanter Corrosion Monitoring. Scholar
  2. 2.
    N. G. Anufriev, Z. G. Skobel’skaya, and A. Sh. Chavchanidze, “Determination of the corrosion properties of metals in food industry media using an Ekspert-K device,” Praktika Protivokor. Zashch., No. 1, 50–53 (2003).Google Scholar
  3. 3.
    N. D. Voitekh, Yu. A. Zhuravlev, and D. A. Batulin, “Effect of the fluid velocity on the corrosion rate in carbonic acid,” Neftegazokhimiya, No. 1, 45–56 (2013).Google Scholar
  4. 4.
    N. G. Anufriev, “New possibilities of the linear polarization resistance method in corrosion studies and practice,” Korroziya: Materialy, Zashchita, No. 1, 36–43 (2012).Google Scholar
  5. 5.
    N. G. Anufriev, “Opportuinities and experience of application of modern polarizing resistance method for corrosion monitoring in heat supply systems,” Praktika Protivokor. Zashch., No. 1 (75), 40–44 (2015).Google Scholar
  6. 6.
    S. V. Brezitskii, A. G. Gumerov, A. P. Medvedev, A. T. Faritov, Yu. G. Rozhdestvenskii, L. P. Khudyakova, and M. D. Getmanskii, “Retrospective analysis of the composition and corrosiveness of the Samotlor deposit media,” Neft. Khoz., No. 6, 96–100 (2003).Google Scholar
  7. 7.
    A. S. Tyusenkov, D. V. Kononov, D. E. Bugai, and A. B. Laptev, “Change in the corrosion activity of water during the transportation of a water–oil mixture along a lined pipeline,” Neftegazovoe Delo, No. 5, 89–95 (2011).Google Scholar
  8. 8.
    V. I. Sorokin and A. V. Boriskin, “Systems for controlling the corrosiveness of a technological medium,” Zavod. Lab., No. 5, 7–10 (1997).Google Scholar
  9. 9.
    I. S. Sivokon’, “Estimation of the accuracy of measuring the corrosion rate by various methods during laboratory and oil-field tests of corrosion inhibitors,” Praktika Protivokor. Zashch., No. 2 (72) 7 (2014).Google Scholar
  10. 10.
    F. Mansfeld, Achievements of the Science of Corrosion and Corrosion Protection (Metallurgiya, Moscow, 1980).Google Scholar
  11. 11.
    V. I. Sorokin, A. V. Boriskin, G. P. Stepanets, et al., “Effect of the polarization current and time on the polarization resistance of grade 20 steel in main water, which is measured on a computer-assisted stand,” Zashch. Met. 31 (6), 658–660 (1995).Google Scholar
  12. 12.
    Monicor-3-GSM-LPR Corrosion Rate Indicator with Information Tank and a Compensator of the Ohmic Resistance of a Solution. Certificate and Operating Instruction. Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. T. Faritov
    • 1
  • Yu. G. Rozhdestvenskii
    • 1
  • S. A. Yamshchikova
    • 2
  • E. R. Minnikhanova
    • 2
  • A. S. Tyusenkov
    • 2
  1. 1.Institute of Problems of Energy Resource TransportationUfa, BashkortostanRussia
  2. 2.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations