Advertisement

Russian Metallurgy (Metally)

, Volume 2016, Issue 4, pp 354–360 | Cite as

Effect of deformation on the structural state of piracetam

  • O. M. KanunnikovaEmail author
  • S. S. Mikhailova
  • O. V. Karban’
  • V. V. Mukhgalin
  • V. V. Aksenova
  • B. V. Sen’kovskii
  • E. A. Pechina
  • V. I. Lad’yanov
Structure and Properties of the Deformed State
  • 38 Downloads

Abstract

The effect of various deformation actions on the structure–phase transformations in piracetam of modifications I and II with a sodium acetate addition is studied. Mechanical activation and pressing are shown to cause the polymorphic transformation of modification I into modification II, and modification III forms predominantly during severe plastic deformation by torsion. The structural difference between the piracetam molecules of modifications I and II is found to be retained in aqueous solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Florent’ev, “Conformation of organic molecules,” SOZh, No. 7, 37–43 (1997).Google Scholar
  2. 2.
    V. V. Boldyrev, “Mechanical chemistry and mechanical activation of solids,” Usp. Fiz. Nauk 75 (3), 203–216 (2006).Google Scholar
  3. 3.
    Basic Foundations of Mechanical Activation, Mechanical Synthesis, and Mechanochemical Technologies, Ed. by E. G. Avvakumov (Izd. SO RAN, Novosibirsk, 2009).Google Scholar
  4. 4.
    O. I. Lomovskii, “Applied mechanical chemistry: pharmaceutics and medical industry,” Obrab. Dispersnykh Mater. Sred, No. 11, 81–100 (2001).Google Scholar
  5. 5.
    A. Kazantsev, Molecular Flexibility in Crystal Structure Prediction: Thesis for the Doctor of Philosophy Degree of Imperial College (London, 2011).Google Scholar
  6. 6.
    F. P. A. Fabbiani, D. R. Allan, S. Parsons, and C. R. Pulham, “An exploration of the polymorphism of piracetam using high pressure,” Cryst. Eng. Comm. 7 (29), 179–186 (2005).CrossRefGoogle Scholar
  7. 7.
    D. Louer, M. Louer, V. A. Dzyabchenko, V. Agafonov, and R. Ceolin, “Structure of a metastable phase of piracetam from X-ray powder diffraction using the atom-atom potential method,” Acta Crystallogr. B 51, 182–187 (1995).CrossRefGoogle Scholar
  8. 8.
    G. Admiraal, J. C. Eikelenboom, and A. Vos, “Structures of the triclinic and monoclinic modifications of (2-oxo-1-pyrrolidinyl) acetamide,” Acta Crystallogr. B 38, 2600–2605 (1982).CrossRefGoogle Scholar
  9. 9.
    F. P. A. Fabbiani, D. R. Allan, W. I. F. David, A. J. Davidson, A. R. Lennie, S. Parsons, C. R. Pulham, and J. E. Warren, “High-pressure studies of phar maceuticals: an exploration of the behavior of piracetam,” Cryst. Growth. Desig. 7 (6), 1115–1124 (2007).CrossRefGoogle Scholar
  10. 10.
    S. Toscani, “An up-to-date approach to drug polymorphism,” Thermochim. Acta 321, 73–79 (1998).CrossRefGoogle Scholar
  11. 11.
    E. A. Pechina, S. M. Ivanov, V. I. Lad’yanov, D. I. Chukov, G. A. Dorofeev, E. V. Kuz’minykh, and M. I. Mokrushina, “Continuous detection of the torque during shear deformation as a method for estimating the evolution of structure–phase transformations,” Deformats. Razr. Mater., No. 4, 41–48 (2013).Google Scholar
  12. 12.
    S. M. Ivanov, E. A. Pechina, V. I. Lad’yanov, G. A. Dorofeev, V. P. Pilyugin, and E. V. Kuz’minykh, “Measurement of torque during severe plastic deformation in Bridgman anvils,” Zavod. Lab. 79 (7-1), 49–51 (2013).Google Scholar
  13. 13.
    S. Pratapa and B. O’Connor, “Development of MgO ceramic standards for X-ray and neutron line broadening assessments,” Advances in X-ray Analysis 45, 41–47 (2001).Google Scholar
  14. 14.
    S. A. Gorovikov, R. Follath, S. L. Molodtsov, and G. Kaindl, “Optimization of the optical design of the Russian–German soft-X-ray beamline at BESSY II,” Nucl. Instrum. Methods. Phys. Res. A 467–468, 565–568 (2001).CrossRefGoogle Scholar
  15. 15.
    P. E. Batson, “Carbon 1s near-edge-absorption fine structure in graphite,” Phys. Rev. B 48, 2608–2610 (1993).CrossRefGoogle Scholar
  16. 16.
    O. M. Kanunnikova, A. A. Shakov, S. S. Mikhailova, A. I. Gorbushina, V. V. Mukhgalin, V. V. Aksenova, V. I. Lad’yanov, N. B. Perevozchikova, D. S. Berestov, and Yu. G. Vasil’ev, “Physicochemical and biological properties of the aqueous solutions of crystalline modifications I, II, and II + Fe of 2-oxo-1-pyrrolidine acetamide,” Vestnik UdGU, No. 4, 82–92 (2012).Google Scholar
  17. 17.
    Organic Chemistry, Ed. by N. A. Tyukavkina (Drofa, Moscow, 2002), Vol. 1.Google Scholar
  18. 18.
    J. Lehmann, D. Solomon, J. Brandes, H. Fleckenstein, C. Jacobsen, and J. Thieme, “Synchrotron-based nearedge X-ray spectroscopy of natural organic matter in soils and sediments,” in Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems, Ed. by A. Senesi, B. Xing, and P. M. Huang (Wiley, New York, 2009), pp. 723–775.Google Scholar
  19. 19.
    Ya. V. Zubavichus, “Soft X-ray synchrotron spectroscopy of bioorganic materials, water, and water solutions,” Doctoral Dissertation in Mathematics and Physics (Moscow, 2012).Google Scholar
  20. 20.
    A. M. Glezer, G. I. Nosova, R. V. Sundeev, and A. V. Shalimova, “Phase transformations in Ti–Ni–Cu crystalline alloy during megaplastic deformation,” Izv. Akad. Nauk, Ser. Fiz. 74 (11), 1576–1582 (2010).Google Scholar
  21. 21.
    A. I. Gorbushina, O. M. Kanunnikova, V. I. Lad’yanov, Yu. G. Vasil’ev, and D. S. Berestov, “Fabrication and physicochemical and biological properties of crystalline modifications I and II of 2-oxo-1-pyrrolidine acetamide,” in Proceedings of XXII Conference of young scientists on Problems of Theoretical and Experimental Chemistry (Yekaterinburg, 2012), p. 322.Google Scholar
  22. 22.
    V. I. Lad’yanov, O. M. Kanunnikova, S. S. Mikhailova, V. V. Mukhgalin, V. V. Aksenova, E. A. Pechina, D. S. Berestov, and Yu. G. Vasil’ev, “Formation of a pharmacologically active structural modification of piracetam during mechanical activation and deformation action,” in Proceedings of VII International Conference on Crystallization Kinetics and Mechanisms. Crystallization and Next-Generation Materials (Ivanovo, 2012), p. 227.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • O. M. Kanunnikova
    • 1
    Email author
  • S. S. Mikhailova
    • 1
  • O. V. Karban’
    • 1
  • V. V. Mukhgalin
    • 1
  • V. V. Aksenova
    • 1
  • B. V. Sen’kovskii
    • 2
  • E. A. Pechina
    • 1
  • V. I. Lad’yanov
    • 1
  1. 1.Physicotechnical Institute, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.Russian–German Laboratory at BESSY IIHelmholtz Zentrum BerlinBerlinGermany

Personalised recommendations