Advertisement

Russian Metallurgy (Metally)

, Volume 2015, Issue 9, pp 732–738 | Cite as

State of the art and the prospects of high-temperature gas extrusion to produce thin-section rods made of hard-to-deform, including nanostructured, alloys

  • V. E. Vaganov
  • A. V. AborkinEmail author
  • M. I. Alymov
  • V. D. Berbentsev
Article

Abstract

The results of studying high-temperature gas extrusion as a method for the production of thin-section billets made of alloys of various classes, including hard-to-deform alloys, with high physicomechanical properties are presented. The possibility of achieving a nanostructured state in a material is considered as a function of technological parameters and the application of combined methods of deformation–temperature treatment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gleiter, “Nanocrystalline materials,” Progr. Mater. Sci. 33, 223–315 (1989).CrossRefGoogle Scholar
  2. 2.
    M. I. Alymov, Powder Metallurgy of Nanocrystalline Materials (Nauka, Moscow, 2007).Google Scholar
  3. 3.
    N. P. Lyakishev and M. I. Alymov, “Structural nanomaterials,” Rossiskie Nanotekhnologii 1 (1–2), 71–80 (2006).Google Scholar
  4. 4.
    V. D. Berbentsov, M. I. Alymov, and S. S. Bedov, “Gas extrusion consolidation of nanopowders,” Rossiskie Nanotekhnologii 2 (7–8), 116–120 (2007).Google Scholar
  5. 5.
    M. I. Alymov, A. I. Epishin, G. Nol’tse, T. Link, S. S. Bedov, and A. B. Ankudinov, “Electron-microscopic investigation of the structure of the compact extruded from a nickel nanopowder,” Rossiskie Nanotekhnologii 2 (3–4), 124–129 (2007).Google Scholar
  6. 6.
    R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000).Google Scholar
  7. 7.
    R. A. Andrievskii and A. V. Ragulya, Nanostructured Materials (Akademiya, Moscow, 2005).Google Scholar
  8. 8.
    I. P. Semenova, G. I. Raab, and R. Z. Valiev, “Nanostructured titanium alloys: new designs and prospects of application,” Rossiskie Nanotekhnologii 9 (5–6), 84–95 (2014).Google Scholar
  9. 9.
    V. D. Berbentsev, A. P. Bashchenko, V. E. Vaganov, A. V. Omel’chenko, V. V. Solov’ev, and Yu. S. Konyaev, “Structure and mechanical properties of 40Kh steel hardened by high-temperature gas extrusion,” Izv. Akad. Nauk SSSR, Ser. Met., No. 5, 177–179 (1987).Google Scholar
  10. 10.
    V. D. Berbentsev, A. P. Bashchenko, V. E. Vaganov, A. V. Omel’chenko, V. V. Solov’ev, and Yu. S. Konyaev, “Structure and properties of an austenitic alloy deformed under high-temperature gas extrusion conditions,” Izv. Akad. Nauk SSSR, Ser. Met., No. 3, 111–114 (1987).Google Scholar
  11. 11.
    Yu. S. Konyaev and V. D. Berbentsev, “High-temperature gas extrusion with local heating,” Kuznech.Shtamp. Pr-vo, No. 10, 13–16 (1980).Google Scholar
  12. 12.
    V. D. Berbentsev, “Speed stability of hot gas extrusion,” Tekhnologiya Metallov, No. 5, 17–21 (2006).Google Scholar
  13. 13.
    M. I. Alymov, A. B. Ankudinov, S. A. Tikhomirov, E. V. Evstratov, and A. M. Arsenkin, “Influence of sintering conditions on the mechanical properties of compacts made of iron powders with various grain sizes,” Perspektivnye Materialy, No. 2, 87–92 (2006).Google Scholar
  14. 14.
    R. P. Guzhva, “Method for the production of small-size cutting tool made of high-speed steel,” RF Patent 2315675, 2008.Google Scholar
  15. 15.
    V. E. Vaganov, “Structural studies and the development of methods for the deformation-thermal hardening of alloying steels during gasextrusion and hydroextrusion,” Cand. Sci. (Eng.) Dissertation, Donetsk: Donetsk Physical–Technical Institute, 1988.Google Scholar
  16. 16.
    M. P. Usikov, V. I. Ikonnikov, and L. M. Utevskii, “Electron-diffraction study of the initial stages of decomposition of carbon martensite,” Fiz. Met. Metalloved. 40 (5), 1026–1031 (1975).Google Scholar
  17. 17.
    A. G. Khachaturyan and M. P. Usikov, “Structural transformations during low tempering of carbon martensite,” Fiz. Met. Metalloved. 43 (3), 554–561 (1977).Google Scholar
  18. 18.
    Yu. A. Geller, Tool Steels, 5th ed. (Metallurgiya, Moscow, 1983).Google Scholar
  19. 19.
    S. V. Zhilyaev, S. D. Kugul’tinov, and I. I. Portnov, “Analysis of the factors that influence the resistance of small-sized cutting tool made of high-sped steel,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 10–12, 106–111 (1994).Google Scholar
  20. 20.
    S. D. Kugul’tinov, A. K. Koval’chuk, and I. I. Portnov, Machining of the Metals Used in Rocket Production (MGTU, Moscow, 2008).Google Scholar
  21. 21.
    M. I. Alymov and V. D. Berbentsev, “Consolidation of nanocrystalline materials using hot extrusion,” in Proceedings of 9th International Symposium on Ordering in Metallic Melts, Rostov-on-Don (2006), Vol. 1, pp. 24–27.Google Scholar
  22. 22.
    F. Z. Utyashev and G. I. Raab, “Effect of the scale factor on the grain refinement during severe plastic deformation,” Kuznechn.-Shtamp. Pr-vo., No. 11, 13–20 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. E. Vaganov
    • 1
    • 2
  • A. V. Aborkin
    • 2
    Email author
  • M. I. Alymov
    • 1
  • V. D. Berbentsev
    • 3
  1. 1.Institute of Structural Macrokinetics and Materials SciencesRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Vladimir State UniversityVladimirRussia
  3. 3.Vereshchagin Institute of High-Pressure PhysicsTroitsk, Moscow oblastRussia

Personalised recommendations