Russian Metallurgy (Metally)

, Volume 2015, Issue 7, pp 511–515 | Cite as

Effect of additions of aluminosilicate and silicate materials on the softening temperature of chromite ore

  • A. V. Zhdanov
  • B. N. Nurmaganbetova
  • V. A. Pavlov


The temperatures of the beginning and end of softening and the temperature range of softening of the fines of the rich chromite ore of the Donskoy Ore Mining & Processing Plant in Kazakhstan are experimentally determined. The following natural and technical silica-containing materials, which are considered as fluxing additions to decrease the melting temperature of the chromite ore, are investigated: aluminosilicate clays, microsilica, and quartzite of various fractions. The effect of additions of the natural and technical silica-containing materials on the temperatures of the beginning and end of softening and the temperature range of softening of the chromite ore of DODPE is analyzed. The influences of various materials and their fraction compositions on the temperature of softening of the chromite ores are compared.


Chromite Kazakhstan RUSSIAN Metallurgy Silicate Material Flux Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Akberdin, A. S. Kim, and R. A. Akberdin, “Agglomeration of refractory chromite ore,” in Proceedings of 13th International Conference on Efficient Technologies in Ferroalloy Industry Infacon XIII (2013), Vol. 1, pp. 1–4.Google Scholar
  2. 2.
    E. E. Abdulabekov, K. K. Kaskin, and A. Kh. Nurumgaliev, Theory and Technology of Production of Chromium Alloys: Tutorial (Respubl. Izdat. Kabinet po Ucheb.-Method Literature, Almaty, 2010).Google Scholar
  3. 3.
    M. A. Ryss, Manufacture of Ferroalloys (Metallurgiya, Moscow, 1985).Google Scholar
  4. 4.
    V. V. Kashin, L. I. Leont’ev, V. V. Verushkin, and D. I. Rakitin, “Technological features of production of agglomerate from chromium ore fines and its melting in electric furnaces,” Stal’, No. 4, 36–40 (2004).Google Scholar
  5. 5.
    Yu. I. Sukharnikov, B. L. Levintov, S. I. Kuz’min, V. A. Mirko, S. A. Krivoptutskii, A. N. Klimushkin, Yu. A. Kabanov, and A. A. Akberdin, “Prospects of creating an efficient technology of agglomeration of the chromium ore fines of Kazakhstan,” Kompleks. Ispol’z. Miner. Syr’ya Kazakhstana, No. 2, 76–80 (1998).Google Scholar
  6. 6.
    Yu. S. Maksimov, N. V. Fedorenko, and R. F. Pershina, “Method of agglomeration of small chromium ore,” in Manufacture of Ferroalloys: Collection of Student Works (Kuzbass. Politekh. Institut, Novokuznetsk, 1986), pp. 56–62.Google Scholar
  7. 7.
    I. B. Edil’baev, O. E. Privalov, M. M. Kospanov, A. V. Suslov, A. I. Kuznetsov, and A. S. Kim, “Production of agglomerate from chromium ores,” Gorn. Zh. Kazakhstana, No. 2, 6–9 (2008).Google Scholar
  8. 8.
    L. I. Kaplun and S. A. Lyashenko, “Technique for estimating the quantity of melt during the agglomeration of iron ore materials,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 4, 8–11 (2003).Google Scholar
  9. 9.
    L. M. Tsylev, Reduction and Slag Formation in BlastFurnace Process (Metallurgiya, Moscow, 1969).Google Scholar
  10. 10.
    GOST 26517–85. Iron Ores, Agglomerates, and Pellets. Method to Determine the Temperature of the Onset of Softening and the Temperature Range of Softening.Google Scholar
  11. 11.
    Slag Atlas: A Handbook (Metallurgiya, Moscow, 1985).Google Scholar
  12. 12.
    A. S. Berezhnoi, Multicomponent Oxide Systems (Naukova Dumka, Kiev, 1970).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Zhdanov
    • 1
  • B. N. Nurmaganbetova
    • 2
  • V. A. Pavlov
    • 1
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Ekibastuz Engineering-Technical InstituteAstanaKazakhstan

Personalised recommendations