Advertisement

Synthesis and Hydrogen Desorption Properties of Nanoscale α-AlH3

Abstract

Aluminum hydride is particularly attractive as a hydrogen storage material due to its high hydrogen volumetric capacity and relatively low hydrogen desorption temperature. However, the properties of nanoscale α‑AlH3 particles are not studied completely due to the difficulties in their synthesis. In this work, we report the synthesis of nanoscale α-AlH3 based on a modified method, together with its activation energy measurements and hydrogen release kinetics. We have discovered that the dehydrogenation activation energy (93.23 kJ/mol) of nanoscale α-AlH3 is remarkably lower than that of micrometer-sized α-AlH3, which further expand practical application of AlH3. Moreover, we demonstrate that the decomposition kinetics of nanoscale α-AlH3 is controlled by nucleation and growth of the aluminum phase in three dimensions. This work first time provides systematic investigation of thermodynamic properties of nano-scale AlH3, which paves the way for its practical applications.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    C. W. Duan, L. X. Hu, and J. L. Ma, J. Mater. Chem. A 6, 6309 (2018).

  2. 2

    H. Liu, X. Wang, Y. Liu, Z. Dong, S. Li, H. Ge, and M. Yan, J. Phys. Chem. C 118, 18908 (2014).

  3. 3

    H. Liu, X. Wang, Y. Liu, Z. Dong, H. Ge, S. Li, and M. Yan, J. Phys. Chem. C 118, 37 (2013).

  4. 4

    H. Liu, X. Wang, Z. Dong, G. Cao, Y. Liu, L. Chen, and M. Yan, Int. J. Hydrogen Energy 38, 10851 (2013).

  5. 5

    F. M. Brower, N. E. Matzek, P. F. Reigler, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J. A. Snover, and K. Terada, J. Am. Chem. Soc. 98, 2450 (1976).

  6. 6

    T. Roubicek and G. Tomassetti, Discrete Cont. Dyn. Syst., Ser. B 19, 2313 (2017).

  7. 7

    H. Liu, X. Wang, H. Zhou, S. Gao, H. Ge, S. Li, and M. Yan, Int. J. Hydrogen Energy 41, 22118 (2016).

  8. 8

    R. Chen, C. L. Duan, X. Liu, K. Qu, G. Tang, X. X. Xu, and B. Shan, J. Vacuum Sci. Technol. A 35, 03E111 (2017).

  9. 9

    J. Graetz, Chem. Soc. Rev. 38, 73 (2009).

  10. 10

    S. Gao, H. Liu, X. Wang, L. Xu, S. Liu, P. Sheng, G. Zhao, B. Wang, H. Li, and M. Yan, Int. J. Hydrogen Energy 42, 25310 (2017).

  11. 11

    J. Graetz and J. J. Reilly, J. Phys. Chem. B 109, 22181 (2005).

  12. 12

    R. Zidan, B. L. Garcia- Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray, and A. G. Harter, Chem. Commun., 3717 (2009).

  13. 13

    S. Kato, M. Bielmann, K. Ikeda, S. Orimo, A. Borgschulte, and A. Züttel, Appl. Phys. Lett. 96, 687 (2010).

  14. 14

    J. Graetz and J. J. Reilly, J. Alloys Compd. 424, 262 (2006).

  15. 15

    Y. Nakagawa, S. Isobe, Y. Wang, N. Hashimoto, S. Ohnuki, L. Zeng, S. Liu, T. Ichikawa, and Y. Kojima, J. Alloys Compd. 580, S163 (2013).

  16. 16

    P. J. Herley and O. Christofferson, J. Phys. Chem. 85, 1874 (1981).

  17. 17

    T. T. Ma and R. X. Gu, Power Technol. 31, 95 (2014).

  18. 18

    I. Gabis, M. Dobrotvorskiy, E. Evard, and A. Voyt, J. Alloys Compd. 509, S671 (2011).

  19. 19

    J. Graetz and J. J. Reilly, J. Phys. Chem. B 109, 22181 (2005).

  20. 20

    W. Jeong, S. H. Lee, and J. Kim, J. Nanosci. Nanotechnol. 16, 2987 (2016).

  21. 21

    J. G. And and J. J. Reilly, J. Phys. Chem. B 109, 22181 (2005).

  22. 22

    T. B. Tang and M. M. Chaudhri, J. Therm. Anal. 18, 247 (1980).

  23. 23

    H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, and H. Weller, Langmuir 21, 1931 (2005).

  24. 24

    Y. Wang, J. A. Yan, and M. Y. Chou, Phys. Rev. B 77 (1) (2008).

  25. 25

    J. H. Sharp, G. W. Brindley, and B. N. N. Achar, J. Am. Ceram. Soc. 49, 379 (1966).

  26. 26

    M. Zhou, Q. L. Xu, P. Lan, W. Yuan, X. Y. Sun, S. Z. Xin, and Y. J. Yan, J. Jilin Inst. Chem. Technol. 26, 35 (2009).

  27. 27

    C. P. Constantinou, Int. J. Chem. Kinet. 26, 1151 (1994).

Download references

ACKNOWLEDGMENTS

This work was supported by the National Key R&D Program of China (grant no. 2017YFB1300104), National Natural Science Foundation of China (grant no. 21571042, 21371040), Science Foundation of Aerospace (grant nos. 6141B0626020201, 6141B0626020101) and the Postdoctoral Foundation of Heilongjiang Province (grant no. LBH-Z16059).

Author information

Correspondence to Jizhuang Fan or Yulin Yang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhaoyang Zhu, Xia, D., Li, Y. et al. Synthesis and Hydrogen Desorption Properties of Nanoscale α-AlH3. Russ. J. Phys. Chem. 93, 2798–2803 (2019) doi:10.1134/S0036024419130417

Download citation

Keywords:

  • aluminum hydride
  • metal hydride
  • hydrogen storage
  • hydrogen desorption