Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2687–2693 | Cite as

Effect of Solvent Polarity on Bromobutyl Rubber Isomerization

  • Junwei Zhou
  • Zhifei Chen
  • Fangang Zeng
  • Yanhao Zhao
  • Geng Tang
  • Liangfa Gong
  • Yi Bo Wu
  • Yu Wei Shang
  • Shu Xin LiEmail author
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 7 Downloads

Abstract

The reaction pathway of the isomerization in the process of butyl rubber bromination was proposed based on density functional theory (DFT) and MP2 calculations with the 6-31+G(d) basis set. The microstructural composition of the brominated butyl rubber was determined via proton nuclear magnetic resonance spectroscopy (1H-NMR).The transition state of isomerization reaction was identified. The geometries of the reactant, transition state, and product structures were optimized. The effect of solvation on model compounds was simulated using the polarizable continuum model (PCM). The energy barriers for isomerization reactions were calculated with different solvents (vacuum, n-hexane, and 245/105 mL n-hexane/dichloromethane (DCM) mixture). The increase in solvent polarity decreased the activation energy and facilitated the isomerization reaction. This finding was consistent with the experimental result.

Keywords:

brominated butyl rubber isomerization density functional theory MP2 transition state solvent effect 

Notes

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation of China (no. 51573020), Beijing Natural Science Foundation (no. 2172022), Scientific Research Project of Beijing Educational Committee (KM201810017008), Project of Petrochina (no. KYWX-18-002) and URT Program (no. 2016J00036) and Dawn TC4000 High-Performance Computation Platform in Beijing Institute of Petro-Chemical Technology.

REFERENCES

  1. 1.
    P. Xie, K. Wang, and G. S. Luo, Ind. Eng. Chem. Res. 57, 3898 (2018).CrossRefGoogle Scholar
  2. 2.
    I. J. Gardner, US Patent No. 4288575 (1981).Google Scholar
  3. 3.
    I. J. Gardner and J. V. Fusco, US Patent No. 4649178 (1987).Google Scholar
  4. 4.
    R. C. Kowalski, W. M. Davis, N. F. Newman, Z. A. Foroulis, and F. P. Baldwin, Patent EP0197104 (1986).Google Scholar
  5. 5.
    G. Kaszas and R. Resendes, CN Patent No. 101100491A (2008).Google Scholar
  6. 6.
    D. M. Cheng, I. J. Gardner, H. C. Wang, C. B. Frederick, A. H. Dekmezian, and P. Hous, Rubber Chem. Technol. 63, 265 (1990).CrossRefGoogle Scholar
  7. 7.
    Y. Wu, W. Guo, S. Li, L. Gong, and Y. Shang, Polym. Korean. 34, 69 (2010).CrossRefGoogle Scholar
  8. 8.
    R. Vukov, Rubber Chem. Technol. 57, 275 (1984).CrossRefGoogle Scholar
  9. 9.
    J. S. Parent, D. J. Thom, G. White, R. A. Whitney, and W. Hopkins, J. Polym. Sci., Part A 39, 2019 (2001).CrossRefGoogle Scholar
  10. 10.
    W. Wei, Z. Haikui, C. Guangwen, X. Yang, P. Han, and C. Jianfeng, Chin. J. Chem. Eng. 22, 398 (2014).CrossRefGoogle Scholar
  11. 11.
    C. Y. Lin and J. J. Ho, J. Phys. Chem. A 106, 4137 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Boronat, P. Viruela, and A. Corma, J. Phys. Chem. A 102, 982 (1998).CrossRefGoogle Scholar
  13. 13.
    M. L. Xin, J. W. Yang, and Y. Li, Chem. Centr. J. 11, 61 (2017).CrossRefGoogle Scholar
  14. 14.
    Q. X. Ji and J. Z. Li, Polym. Mater Sci. Eng. 9 (1994).Google Scholar
  15. 15.
    T. Y. Guo, G. J. Hao, et al. J. Appl. Polym. Sci. 86, 3078 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Head-Gordon, J. A. Pople, and M. J. Frisch, Chem. Phys. Lett. 153, 503 (1988).Google Scholar
  17. 17.
    M. Head-Gordon and Т. Head-Gordon, Chem. Phys. Lett. 220, 122 (1994).Google Scholar
  18. 18.
    S. Sæbø and J. Almlöf, Chem. Phys. Lett. 154, 83 (1989).CrossRefGoogle Scholar
  19. 19.
    M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 275 (1990).CrossRefGoogle Scholar
  20. 20.
    M. J. Frisch, M. Head-Gordon, and J. A. Pople, Chem. Phys. Lett. 166, 281 (1990).CrossRefGoogle Scholar
  21. 21.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  22. 22.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 247 (1994).CrossRefGoogle Scholar
  23. 23.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew, Phys. Rev. B 33, 8822 (1986).CrossRefGoogle Scholar
  25. 25.
    T. Clark, J. Comp. Chem. 4, 294 (1983).CrossRefGoogle Scholar
  26. 26.
    W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).CrossRefGoogle Scholar
  27. 27.
    W. J. Hehre and W. A. Lathan, J. Chem. Phys. 56, 5255 (1972).CrossRefGoogle Scholar
  28. 28.
    K. Fukui, Acc. Chem. Res. 14, 471 (1981).CrossRefGoogle Scholar
  29. 29.
    E. D. Glendening, C. R. Landis, and F. Weinhold, Wires Comput. Mol. Sci. 2, 1 (2012).CrossRefGoogle Scholar
  30. 30.
    S. Miertus and J. Tomasi, Chem. Phys. 65, 239 (1982).CrossRefGoogle Scholar
  31. 31.
    I. Mayer, Int. J. Quantum Chem. 29, 73 (1986).CrossRefGoogle Scholar
  32. 32.
    H. Dureckova, T. K. Woo, S. Alavi, and J. A. Ripmeester, (2015).Google Scholar
  33. 33.
    P. Polizer, J. Comput. Chem. 2, 273 (1991).Google Scholar
  34. 34.
    A. S. Beni and M. Zarandi, Russ. J. Phys. Chem. A 90, 374 (2016).CrossRefGoogle Scholar
  35. 35.
    O. Rubio-Pons, L. Serrano-Andrés, D. Burget, and P. Jacques, J. Photochem. Photobiol. A 179, 298 (2006).CrossRefGoogle Scholar
  36. 36.
    A. Noori Tahneh and E. Balali, J. Mol. Model. 23, 356 (2017).CrossRefGoogle Scholar
  37. 37.
    B. Mennucci, J. Tomasi, R. Cammi, J. R. Cheeseman, M. J. Frisch, F. J. Devlin, et al., J. Phys. Chem. A 106, 6102 (2002).CrossRefGoogle Scholar
  38. 38.
    W. Benchouk, S. M. Mekelleche, B. Silvi, M. J. Aurell, and L. R. Domingo, J. Phys. Org. Chem. 24, 611 (2011).CrossRefGoogle Scholar
  39. 39.
    Xin Liu, Li. Yaping, and F. Zhang, J. Mol. Catal. A 396, 181 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Junwei Zhou
    • 1
    • 2
    • 3
  • Zhifei Chen
    • 1
    • 2
    • 3
  • Fangang Zeng
    • 4
  • Yanhao Zhao
    • 1
    • 2
    • 3
  • Geng Tang
    • 2
  • Liangfa Gong
    • 2
    • 3
  • Yi Bo Wu
    • 2
    • 3
  • Yu Wei Shang
    • 2
    • 3
  • Shu Xin Li
    • 2
    • 3
    Email author
  1. 1.College of Material Science and Engineering, Beijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Materials Science and Engineering, Beijing Institute of Petrochemical TechnologyBeijingChina
  3. 3.Beijing Key Lab of Special Elastomeric Composite MaterialsBeijingChina
  4. 4.School of Environment and Natural Resources, Renmin University of ChinaBeijingChina

Personalised recommendations