Advertisement

Effect of Tm3+ Concentration on the Generation of Reactive Oxygen Species in NaYb1 – xF4:\({\text{Tm}}_{x}^{{3 + }}\) for the Multifunctional Photosensitizer

  • 3 Accesses

Abstract

To develop the multifunctional photosensitizer NaYb1 – xF4:\({\text{Tm}}_{x}^{{3 + }}\), the effect of Tm3+ concentration on the photosensitivity in NaYb1 – xF4:\({\text{Tm}}_{x}^{{3 + }}\) nanoparticles (NPs) was investigated. Photosensitivity in NaYb1 – xF4:\({\text{Tm}}_{x}^{{3 + }}\) was characterized by chemical probe method, in which 1,3-diphenylisobenzofuran (DPBF) was used as the indicator; and DPBF consumption rate (k) can be used to evaluate the photosensitivity. Experimental results show that in the concentration range of 0–2% for Tm3+, k decreases linearly with increase in Tm3+ concentration with the slope of 0.3. This is mainly attributed to the introduction of fluorescence channel from Yb3+ to Tm3+, which weakens the energy transfer from Yb3+ to oxygen, decreasing k. The result is also confirmed in theoretical analysis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    X. L. Tang, J. Wu, B. L. Lin, S. Cui, H. M. Liu, R. T. Yu, X. D. Shen, T. W. Wang, and W. Xia, Acta Biomater. 74, 360 (2018).

  2. 2

    S. He, N. J. Johnson, V. A. N. Huu, Y. Huang, and A. Almutairi, Chem. Mater. 30, 3991 (2018).

  3. 3

    P. Ma, H. Xiao, C. Yu, J. Liu, Z. Cheng, H. Song, X. Zhang, C. Li, J. Wang, Z. Gu, and J. Lin, Nano Lett. 17, 928 (2017).

  4. 4

    Y. R. Huang, S. He, W. P. Cao, K. Y. Cai, and X. J. Liang, Nanoscale 4, 6135 (2012).

  5. 5

    Y. Ye, C. Wang, X. Zhang, Q. Hu, Y. Zhang, Q. Liu, D. Wen, J. Milligan, A. Bellotti, L. Huang, G. Dotti, and Z. Gu, Sci. Immunol. 2, eaan5692 (2017).

  6. 6

    Y. M. Li, R. Wang, Y. L. Xu, W. Zheng, and Y. M. Li, Inorg. Chem. 57, 8012 (2018).

  7. 7

    D. H. Hu, Z. H. Sheng, G. H. Gao, F. M. Siu, C. B. Liu, Q. Wan, P. Gong, H. R. Zheng, Y. F. Ma, and L. T. Cai, Biomaterials 93, 10 (2016).

  8. 8

    W. P. Fan, P. Huang, and X. Y. Chen, Chem. Soc. Rev. 45, 6488 (2016).

  9. 9

    E. D. Sternberg, D. Dolphin, and C. Bruckner, Tetrahedron 54, 4151 (1998).

  10. 10

    X. J. Yang, Q. Q. Xiao, C. X. Niu, N. Jin, J. Ouyang, X. Y. Xiao, and D. C. He, J. Mater. Chem. B 1, 2757 (2013).

  11. 11

    F. Y. Li, Y. Du, J. N. Liu, H. Sun, J. Wang, R. Q. Li, D. Kim, T. Hyeon, and D. S. Ling, Adv. Mater. 30, e1802808 (2018).

  12. 12

    X. Wang, X. Yin, X. Y. Lai, and Y. T. Liu, Spectrochim. Acta, Part A 203, 229 (2018).

  13. 13

    B. C. Wilson and M. S. Patterson, Phys. Med. Biol. 53, R61 (2008).

  14. 14

    P. Zhang, W. Steelant, M. Kumar, and M. Scholfield, J. Am. Chem. Soc. 129, 4526 (2007).

  15. 15

    K. Liu, X. M. Liu, Q. H. Zeng, Y. L. Zhang, L. P. Tu, T. Liu, X. G. Kong, Y. H. Wang, F. Cao, S. A. G. Lambrechts, M. C. G. Aalders, and H. Zhang, ACS Nano 6, 4054 (2012).

  16. 16

    A. Punjabi, X. Wu, A. Tokatli-Apollon, M. El-Rifai, H. Lee, Y. W. Zhang, C. Wang, Z. Liu, E. M. Chan, C. Y. Duan, and G. Han, ACS Nano 8, 10621 (2014).

  17. 17

    S. W. Li, S. S. Cui, D. Y. Yin, Q. Y. Zhu, Y. X. Ma, Z. Y. Qian, and Y. Q. Gu, Nanoscale 9, 3912 (2017).

  18. 18

    J. Y. Zhang, S. Chen, P. Wang, D. J. Jiang, D. X. Ban, N. Z. Zhong, G. C. Jiang, H. Li, Z. Hu, J. R. Xiao, Z. G. Zhang, and W. W. Cao, Nanoscale 9, 2706 (2017).

  19. 19

    Q. P. Qiang, S. S. Du, X. L. Ma, W. B. Chen, G. Y. Zhang, and Y. H. Wang, Dalton Trans. 47, 8656 (2018).

  20. 20

    Z. Q. Li and Y. Zhang, Nanotechnology 19, 345606 (2008).

  21. 21

    P. Wang, F. Qin, L. Wang, F. J. Li, Y. D. Zheng, Y. F. Song, Z. G. Zhang, and W. W. Cao, Opt. Express 22, 2414 (2014).

  22. 22

    A. Bagheri, Z. Li, C. Boyer, and M. Lim, Dalton Trans. 47, 8629 (2018).

  23. 23

    Y. Wang, K. Liu, X. M. Liu, K. Dohnalova, T. Gregorkiewicz, X. G. Kong, M. C. G. Aalders, W. J. Buma, and H. Zhang, J. Phys. Chem. Lett. 2, 2083 (2011).

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (nos. 81571720 and 81530052), Harbin Special Fund for Innovation Talents of Science and Technology (no. RC2017QN017004), the 13th Five-year Educational Science Planned Projects in Heilongjiang Province (no. GBD1317048). We thank the Key Laboratory for Photonic and Electronic Bandgap Materials in Harbin Normal University for technical support.

Author information

Correspondence to Q. Y. Wang or Z. G. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J.Y., Wang, Q.Y., Liang, H. et al. Effect of Tm3+ Concentration on the Generation of Reactive Oxygen Species in NaYb1 – xF4:\({\text{Tm}}_{x}^{{3 + }}\) for the Multifunctional Photosensitizer. Russ. J. Phys. Chem. 93, 2744–2748 (2019). https://doi.org/10.1134/S0036024419130387

Download citation

Keywords:

  • upconversio
  • fluorescence
  • photodynamic therapy
  • photosensitizer