Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2694–2698 | Cite as

Structures and Properties of Methylammonium Iodide Precursors of Halide Perovskites and Implications for Solar Cells: an Ab-Initio Investigation

  • Lei ZhangEmail author
  • Bo Wu
  • Shuai Lin
  • Jingfa Li
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 4 Downloads

Abstract

Halide perovskite materials based on the prototypical CH3NH3PbI3 received much attention in recent years, with applications ranging from solar cells to light-emitting diodes. However, many fundamental aspects of the halide perovskite materials remain elusive at the moment, such as the structures and impacts of the methyl ammonium precursors on the halide perovskite properties. In this manuscript, we take one step back to theoretically investigate the monomer and dimer structures of methylammonium iodide, a precursor for the synthesis of the halide perovskite CH3NH3PbI3 via the first principles calculations, in order to provide a more complete view of the halide perovskite structures. The calculations show that the hydrogen bonds are found to be the major factor that stabilizes the methylammonium iodide monomers and dimers, while the dimeric structure exhibits geometry with each iodine atom shared by two neighbouring hydrogen atoms in the methylammonium cation molecules. The hydrogen bonds in the methylammonium iodide are proposed to be correlated with the three-dimensional halide perovskite buildup, and the formation of the hydrogen bond that is available in the halide perovskite framework could be “historically” traced back as early as the precursor preparation. The manuscript addresses the importance of the hydrogen bonds in the synthesis and the crystal formation of halide perovskite materials, and anticipates the necessity of the fundamental theoretical understanding of the structures from the halide perovskite precursors to the halide perovskite frameworks.

Keywords:

perovskite solar cell methylammonium iodide hydrogen bond ab initio dimer 

Notes

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (no. 51702165), and the Jiangsu province “Double Plan” project (R2016SCB02). The authors acknowledge computational support from NSCCSZ Shenzhen, China.

AUTHOR CONTRIBUTIONS

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

REFERENCES

  1. 1.
    M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, et al., Nature (London, U.K.) 553, 189 (2018).CrossRefGoogle Scholar
  2. 2.
    B. O’Regan and M. Grätzel, Nature (London, U.K.) 353, 737 (1991).CrossRefGoogle Scholar
  3. 3.
    M. Grätzel, Nature (London, U.K.) 414, 338 (2001).CrossRefGoogle Scholar
  4. 4.
    M. D. McGehee, Nature (London, U.K.) 501, 323 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Sun, Nat. Chem. 7, 684 (2015).CrossRefGoogle Scholar
  6. 6.
    C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’Regan, A. Walsh, and M. S. Islam, Nat. Commun. 6, 7497 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  8. 8.
    N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam, and S. A. Haque, Nat. Commun. 8, 15218 (2017).CrossRefGoogle Scholar
  9. 9.
    S. D. Stranks and H. J. Snaith, Nat. Nanotechnol. 10, 391 (2015).CrossRefGoogle Scholar
  10. 10.
    O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. M. Espallargas, M. Graetzel, M. K. Nazeeruddin, and H. J. Bolink, Nat. Photon. 8, 128 (2014).CrossRefGoogle Scholar
  11. 11.
    E. Edri, S. Kirmayer, S. Mukhopadhyay, K. Gartsman, G. Hodes, and D. Cahen, Nat. Commun. 5, 3461 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. Bai, Q. Dong, Y. Shao, Y. Deng, Q. Wang, L. Shen, D. Wang, W. Wei, and J. Huang, Nat. Commun. 7, 12806 (2016).CrossRefGoogle Scholar
  13. 13.
    C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, Nat. Commun. 6, 7747 (2015).CrossRefGoogle Scholar
  14. 14.
    X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, and J. Huang, Nat. Energy 2, 17102 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. (Michael) Yang, M. Wei, B. R. Sutherland, et al., Nat. Commun. 8, 15640 (2017).CrossRefGoogle Scholar
  16. 16.
    H. Zhou, Q. Chen, G. Li, S. Luo, T. b. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Science (Washington, DC, U. S.) 345, 542 (2014).CrossRefGoogle Scholar
  17. 17.
    W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, et al., Science (Washington, DC, U. S.) 356, 1376 (2017).CrossRefGoogle Scholar
  18. 18.
    W. S. Yang, B. W. Park, E. H. Jung, and N. J. Jeon, Science (Washington, DC, U. S.) 356, 1376 (2017).CrossRefGoogle Scholar
  19. 19.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, S. D. Stranks, G. E. Eperon, G. Grancini, et al., Science (Washington, DC, U. S.) 347, 967 (2015).CrossRefGoogle Scholar
  20. 20.
    M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, et al., Science (Washington, DC, U. S.) 354, 206 (2016).CrossRefGoogle Scholar
  21. 21.
    A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Science (Washington, DC, U. S.) 352, 44241 (2016).CrossRefGoogle Scholar
  22. 22.
    D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, et al., Science (Washington, DC, U. S.) 351, 151 (2016).CrossRefGoogle Scholar
  23. 23.
    L. Zhang, L. Xu, Q. Li, J. Su, and J. Li, Sol. Energy Mater. Sol. Cells 186, 349 (2018).CrossRefGoogle Scholar
  24. 24.
    L. Zhang, F. Yu, Q. Li, J. Su, J. Li, and M. Li, J. Phys. D 51, 315302 (2018).CrossRefGoogle Scholar
  25. 25.
    L. Zhang, L. Xu, F. Yu, and J. Li, J. Mater. Chem. C 6, 234 (2018).CrossRefGoogle Scholar
  26. 26.
    W. Geng, C. J. Tong, Z. K. Tang, C. Yam, Y. N. Zhang, W. M. Lau, and L. M. Liu, J. Mater. 1, 213 (2015).Google Scholar
  27. 27.
    C. Quarti, F. de Angelis, and D. Beljonne, Chem. Mater. 29, 958 (2017).CrossRefGoogle Scholar
  28. 28.
    B. Delley, J. Chem. Phys. 113, 7756 (2000).CrossRefGoogle Scholar
  29. 29.
    A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations