Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2710–2717 | Cite as

Computational Study on the Atmospheric Oxidation Mechanism of 6-Chlorobenzo[a]pyrene Initiated by OH Radicals

  • Xiaolan ZengEmail author
  • Xiaozi Sun
  • Heyu Wang


Density functional theory (DFT) calculations at the MPWB1K/ 6-311+G(3df,2p) level were performed to study OH-initiated atmospheric oxidation reactions of 6-chlorobenzo[a]pyrene (6-ClBaP). The rate constants for key elementary reactions were estimated by means of transition state theory. The computed results demonstrate that only four of the twelve possible intermediates (INT1, INT3, INT4, and INT12) can be generated kinetically. The principal atmospheric oxidation products of 6-ClBaP, benzo[a]pyrenols, can be produced by subsequent reactions of INT1, INT3, INT4, and INT12, although their hydrogen abstraction mechanism is not exactly the same. For peroxy radical intermediates formed by O2 addition toward INT4 intramolecular hydrogen transfer from −OH to −OO was found to be a highly non-spontaneous process and hence difficult to proceed. The rate-controlling steps for subsequent reactions of INT1, INT3, INT4, and INT12 involving NO2 or NO were found to be very slow kinetically.


atmospheric oxidation reaction 6-chlorobenzo[a]pyrene (6-ClBaP) OH radicals oxidation products 



This work was funded by the National Natural Science Foundation of China (no. 21876143), Key Scientific Research Projects of Universities in Henan Province (no. 19B610003), Nanhu Scholars Program for Young Scholars of XYNU, and High Performance Computing Lab of Xinyang Normal University.


  1. 1.
    A. Colmsjö, A. Rannug, and U. Rannug, Mut. Res. 135, 21 (1984).CrossRefGoogle Scholar
  2. 2.
    G. Löfroth, L. Nilsson, and E. Agurell, Mut. Res. 155, 91 (1985).CrossRefGoogle Scholar
  3. 3.
    T. Ohura, M. Morita, M. Makino, T. Amagai, and K. Shimoi, Chem. Res. Toxicol. 20, 1237 (2007).CrossRefGoogle Scholar
  4. 4.
    Y. Horii, J. S. Khim, E. B. Higley, J. P. Giesy, T. Ohura, and K. Kannan, Environ. Sci. Technol. 43, 2159 (2009).CrossRefGoogle Scholar
  5. 5.
    T. Ohura, K. I. Sawada, T. Amagai, and M. Shinomiya, Environ. Sci. Technol. 43, 2269 (2009).CrossRefGoogle Scholar
  6. 6.
    P. Haglund, T. Alsberg, A. Bergman, and B. Jansson, Chemosphere 16, 2441 (1987).CrossRefGoogle Scholar
  7. 7.
    U. L. Nilsson and C. E. Östman, Environ. Sci. Technol. 27, 1826 (1993).CrossRefGoogle Scholar
  8. 8.
    D. L. Wang, X. B. Xu, S. G. Chu, and D. R. Zhang, Chemosphere 53, 495 (2003).CrossRefGoogle Scholar
  9. 9.
    T. Ohura, A. Kitazawa, T. Amagai, and M. Makino, Environ. Sci. Technol. 39, 85 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Horii, G. Ok, T. Ohura, and K. Kannan, Environ. Sci. Technol. 42, 1904 (2008).CrossRefGoogle Scholar
  11. 11.
    T. Ohura, Y. Kamiyaa, and F. Ikemori, J. Hazard. Mater. 312, 254 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Kakimoto, H. Nagayoshi, Y. Konishi, K. Kajimura, T. Ohura, T. Nakano, M. Hata, M. Furuuchi, N. Tang, K. Hayakawa, and A. Toriba, Arch. Environ. Contam. Toxicol. 72, 58 (2017).CrossRefGoogle Scholar
  13. 13.
    T. Ohura, Y. Horii, M. Kojima, and Y. Kamiya, Atmos. Environ. 81, 84 (2013).CrossRefGoogle Scholar
  14. 14.
    K. Kakimoto, H. Nagayoshi, Y. Konishi, K. Kajimura, T. Ohura, K. Hayakawa, and A. Toriba, Chemosphere 111, 40 (2014).CrossRefGoogle Scholar
  15. 15.
    E. S. C. Kwok, J. Arey, and R. Atkinson, Environ. Sci. Technol. 28, 528 (1994).CrossRefGoogle Scholar
  16. 16.
    J. E. Lee, W. Choi, B. J. Mhin, and K. Balasubramanian, J. Phys. Chem. A 108, 607 (2004).CrossRefGoogle Scholar
  17. 17.
    M. Altarawneh, E. M. Kennedy, B. Z. Dlugogorski, and J. C. Mackie, J. Phys. Chem. A 112, 6960 (2008).CrossRefGoogle Scholar
  18. 18.
    L. M. Wang and A. L. Tang, Chemosphere 82, 782 (2011).CrossRefGoogle Scholar
  19. 19.
    L. M. Wang and A. L. Tang, Chemosphere 89, 950 (2012).CrossRefGoogle Scholar
  20. 20.
    Q. Z. Zhang, R. Gao, F. Xu, Q. Zhou, G. B. Jiang, T. Wang, J. M. Chen, J. T. Hu, W. Jiang, and W. X. Wang, Environ. Sci. Technol. 48, 5051 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Dang, X. L. Shi, Q. Z. Zhang, J. T. Hu, J. M. Chen, and W. X. Wang, Sci. Total Environ. 490, 639 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Dang, X. L. Shi, J. T. Hu, J. M. Chen, Q. Z. Zhang, and W. X. Wang, Chemosphere 119, 387 (2015).CrossRefGoogle Scholar
  23. 23.
    Y. Wang and X. L. Zeng, Comput. Theor. Chem. 1115, 144 (2017).CrossRefGoogle Scholar
  24. 24.
    Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004).CrossRefGoogle Scholar
  25. 25.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09 (Gaussian Inc., Wallingford CT, 2009).Google Scholar
  26. 26.
    M. J. Pilling and P. W. Seakins, Reaction Kinetics (Oxford Univ. Press, New York, 1999).Google Scholar
  27. 27.
    B. Liu and H. X. Wang, J. Environ. Sci. 20, 28 (2008).CrossRefGoogle Scholar
  28. 28.
    C. X. Zhang and X. M. Sun, Sci. Total Environ. 468–469, 104 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Xinyang Normal UniversityXinyangPR China

Personalised recommendations