Influence of Silicon-Doping in n-AlGaN Layer on the Optical and Electrical Performance of Deep Ultraviolet Light-Emitting Diodes

  • 7 Accesses


The influence of two different methods of silicon doping in AlGaN layer, that is, modulation-doping (MD) and delta-doping (DD), on the optical and electrical performance of deep ultraviolet light-emitting diodes (DUV-LEDs) has been investigated. Both the photoluminescence and electroluminescence intensities in the Si-DD structure are stronger than those obtained by the Si-MD method, while the forward voltage and reverse leakage current are slightly smaller in the DD structure than that in the MD structure. Compared with the MD structure, the DD structure shows higher capacitance-voltage characteristics. This study suggests that the DD method can improve the optical and electrical performance of DUV-LEDs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    M. H. Chang, D. Das, P. V. Varde, and M. Pecht, Microelectron. Reliab. 52, 762 (2012).

  2. 2

    M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, Semicond. Sci. Technol. 26, 014036 (2011).

  3. 3

    E. F. Schubert and J. K. Kim, Science (Washington, DC, U. S.) 308, 1274 (2005).

  4. 4

    D. P. Han, Y. J. Kim, J. I. Shim, and D. S. Shin, IEEE Photon. Technol. Lett. 28, 2407 (2016).

  5. 5

    C. Pietzka, G. Li, M. Alomari, H. Xing, D. Jena, and E. Kohn, J. Appl. Phys. 112, 874 (2012).

  6. 6

    D. K. Schroderauth, Semiconductor Material and Device Characterization (Wiley, New York, (2006)).

  7. 7

    J. Z. Hu, L. Q. Yang, and M. W. Shin, J. Phys. D: Appl. Phys. 41, 035107 (2008).

  8. 8

    M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, IEEE Trans. Electron Dev. 57, 108 (2010).

  9. 9

    S. K. Jeon, J. G. Lee, E. H. Park, J. Jang, J. G. Lim, S. K. Kim, and J. S. Park, Appl. Phys. Lett. 94, 131106 (2009).

  10. 10

    T. C. Wen, S. J. Chang, C. T. Lee, W. C. Lai, and J. K. Sheu, IEEE Trans. Electron Dev. 51, 1743 (2004).

  11. 11

    G. Y. Zhao, M. Adachi, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett. 77, 2195 (2000).

  12. 12

    Z. Y. Zheng, Z. M. Chen, Y. L. Xian, B. F. Fan, S. J. Huang, W. Q. Jia, Z. S. Wu, G. Wang, and H. Jiang, Appl. Phys. Lett 99, 111109 (2011).

  13. 13

    M. K. Kwon, K. Park, S. H. Baek, J. Y. Kim, and S. J. Park, J. Appl. Phys. 97, 48 (2005).

  14. 14

    P. P. Li, H. J. Li, Y. B. Zhao, J. J. Kang, Z. C. Li, Z. Q. Liu, X. Y. Yi, J. M. Li, and G. H. Wang, IEEE Photon. Technol. Lett. 27, 2004 (2015).

  15. 15

    R. D. Dupuis and M. R. Krames, J. Lightwave Technol. 26, 1154 (2008).

  16. 16

    L. Jinmin, L. Zhe, L. Zhiqiang, Y. Jianchang, W. Tongbo, Y. Xiaoyan, and W. Junxi, J. Semicond. 37, 061001 (2016).

  17. 17

    Y. N. Guo, Y. Zhang, J. X. Wang, J. C. Yan, Y. D. Tian, X. Chen, L. L. Sun, T. B. Wei, and J. M. Li, in Proceedings of the 2015 12th China International Forum on Solid State Lighting SSLCHINA,2015, p. 4.

  18. 18

    Z. Shaoxin, Y. Jianchang, Z. Jianping, Z. Ning, and S. Zhao, J. Semicond. 34, 053004 (2013).

  19. 19

    J. Yan, Y. Tian, X. Chen, Y. Zhang, J. Wang, and J. Li, Phys. Status Solidi C 13, 228 (2016).

  20. 20

    P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, Appl. Phys. Lett. 102, 241113 (2013).

  21. 21

    J. Yan, J. Wang, P. Cong, L. Sun, N. Liu, Z. Liu, C. Zhao, and J. Li, Phys. Status Solidi C 8, 461 (2011).

  22. 22

    J. Yan, J. Wang, Y. Zhang, P. Cong, L. Sun, Y. Tian, C. Zhao, and J. Li, J. Cryst. Growth 414, 254 (2015).

  23. 23

    Harris, J. J. Clegg, J. B. Beall, R. B. Castagne, J. Woodbridge, and K. Roberts, J. Cryst. Growth 111, 239 (1991).

  24. 24

    H. T. Chen, Y. J. Lu, Y. L. Gao, and Z. Chen, Acta Phys. Sin. 61, 167104 (2012).

  25. 25

    X. H. Li, S. Wang, H. Xie, Y. O. Wei, T. T. Kao, M. M. Satter, S. C. Shen, P. D. Yoder, T. Detchprohm, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, Phys. Status Solidi B 252, 1089 (2015).

  26. 26

    J. C. Zhang, D. S. Jiang, Q. Sun, J. F. Wang, Y. T. Wang, J. P. Liu, J. Chen, R. Q. Jin, J. J. Zhu, H. Yang, T. Dai, and Q. J. Jia, Appl. Phys. Lett. 87, 071908 (2005).

  27. 27

    G. M. Zhong, J. L. Tang, and X. K. Dong, Acta Phys. Sin. 61, 127803 (2012).

  28. 28

    J. Piprek, Nitride Semiconductor Devices: Principles and Simulation (Wiley, New York, 2007)).

  29. 29

    O. Contreras, F. A. Ponce, J. Christen, A. Dadgar, and A. Krost, Appl. Phys. Lett. 81, 4712 (2002).

  30. 30

    Y. B. Pan, Z. J. Yang, Z. T. Chen, Y. Lu, T. J. Yu, X. D. Hu, K. Xu, and G. Y. Zhang, J. Cryst. Growth 286, 255 (2006).

  31. 31

    C. Haiying, F. Wenqing, M. Chunlan, L. Hechu, W. Li, and J. Fengyi, Acta Opt. Sin. 26, 001269 (2006).

  32. 32

    Z. X. Guo, H. R. Sun, and L. N. Zhao, Chin. Phys. B 26, 087308 (2017).

  33. 33

    D. B. Li, M. Aoki, T. Katsuno, H. Miyake, K. Hiramatsu, and T. Shibata, J. Cryst. Growth 298, 500 (2007).

  34. 34

    J. R. Zhu, L. C. Fan, Y. C. Su, and J. G. Hu, Acta Phys. Sin. 65, 237501 (2016).

  35. 35

    Kang Jea Lee, Eun Ho Shin, and Kee Young Lim, Appl. Phys. Lett. 85, 1502 (2004).

  36. 36

    H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, Appl. Phys. Lett. 77, 1903 (2000).

  37. 37

    G. Meneghesso, S. Podda, and M. Vanzi, Microelectron. Reliab. 41, 1609 (2001).

  38. 38

    S. Hwang and J. Shim, IEEE Trans. Electron Dev. 55, 1123 (2008).

  39. 39

    C. H. Jang, J. K. Sheu, C. M. Tsai, S. J. Chang, W. C. Lai, M. L. Lee, T. K. Ko, C. F. Shen, and S. C. Shei, IEEE J. Quantum Electron. 46, 513 (2010).

  40. 40

    L. B. Chang, K. L. Chiang, H. Y. Chang, M. J. Jeng, C. Y. Yen, C. C. Lin, Y. H. Chang, M. J. Lai, Y. L. Lee, and T. W. Soong, IEEE Trans. Electron Dev. 57, 119 (2010).

  41. 41

    H. Kuan, Jpn. J. Appl. Phys. 47, 1544 (2008).

  42. 42

    C. L. Lee and W. I. Lee, Jpn. J. Appl. Phys. 46, L457 (2007).

  43. 43

    Y. J. Liu, D. F. Guo, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. H. Hsu, and W. C. Liu, IEEE Trans. Electron Dev. 57, 2155 (2010).

  44. 44

    C. X. Wang, X. Zhang, H. Guo, H. J. Chen, S. C. Wang, H. Q. Yang, and Y. P. Cui, Jpn. J. Appl. Phys. 52, 102103 (2013).

  45. 45

    M. Qiao, B. Zhang, and Y. T. He, Chin. Phys. B 26, 077304 (2017).

  46. 46

    S. C. Yang, P. Lin, H. K. Fu, C. P. Wang, T. T. Chen, A. T. Lee, S. B. Huang, and M. T. Chu, Jpn. J. Appl. Phys. 49, 056602 (2010).

  47. 47

    J. Cho, E. F. Schubert, J. K. Son, D. Y. Kim and J. K. Kim, Electron. Mater. Lett. 10, 1155 (2014).

Download references


This work was supported by the National Natural Science Foundation of China for Excellent Young Scholars (no. 61622404), National Natural Science Foundation of China (no. 61177052), National Key R&D Program of China (no. 2016YFB0400802), the National Natural Sciences Foundation of China (Grant no. 61674147), Beijing Nova Program Z181100006218007, Youth Innovation Promotion Association CAS 2017157, Beijing Municipal Science and Technology Project under grant no. D161100002516002, the Science and Technology Planning Projects of Guangdong Province, China under grant no. 2015B010114007.

Author information

Correspondence to Jianchang Yan or Miao He.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sipan Yang, Yan, J., He, M. et al. Influence of Silicon-Doping in n-AlGaN Layer on the Optical and Electrical Performance of Deep Ultraviolet Light-Emitting Diodes. Russ. J. Phys. Chem. 93, 2817–2823 (2019).

Download citation


  • ultraviolet light-emitting diodes
  • Si-doping
  • n-AlGaN layer
  • current
  • bias voltage
  • capacitance