Advertisement

Catalytic Conversion of Levulinic Acid to γ-Valerolactone over Hierarchical AlPO4-5 Supported Nickel Catalysts

Abstract

Catalytic conversion of biomass based platform chemicals to value added chemicals has attracted much attention recently. In this work, Ni-based catalysts were developed for the conversion of levulinic acid to γ-valerolactone. By investigation of reduction behavior of NiO, it was found that a relatively low reduction temperature (300°C) can provide the reduction of NiO to Ni0. The high reduction temperature (500°C) generally applied in literature is not necessary. The effect of supports was also studied, and hierarchical AlPO4-5 (AlPO4-5-meso) supported Ni showed the best catalytic performance due to the proper pore size of AlPO4-5-meso, which contains both micropores and mesopores. The effect of Ni loading was also investigated, 10 wt % of Ni is enough for this reaction, which is lower than the reported amount of Ni loading. By using Ni/AlPO4-5-meso with 10 wt % Ni as catalyst, 84% γ-valerolactone yield and 100% levulinic acid conversion can be obtained after reaction for 10 h at 180°C.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. 1

    T. Lu, X. Fu, L. Zhou, Y. Su, X. Yang, L. Han, J. Wang, and C. Song, ACS Catal. 7, 7274 (2017).

  2. 2

    C. Wang, Q. Zhang, Y. Chen, X. Zhang, and F. Xu, ACS Sustainable Chem. Eng. 6, 3154 (2018).

  3. 3

    Z. Zhang, ChemSusChem 9, 156 (2016).

  4. 4

    A. Osatiashtiani, A. F. Lee, and K. Wilson, J. Chem. Technol. Biotechnol. 92, 1125 (2017).

  5. 5

    W. Cao, W. Luo, H. Ge, Y. Su, A. Wang, and T. Zhang, Green Chem. 19, 2201 (2017).

  6. 6

    A. S. Piskun, J. Ftouni, Z. Tang, B. M. Weckhuysen, P. C. A. Bruijnincx, and H. J. Heeres, Appl. Catal. A 549, 197 (2018).

  7. 7

    S. Cao, J. R. Monnier, and J. R. Regalbuto, J. Catal. 347, 72 (2017).

  8. 8

    C. Xiao, T. W. Goh, Z. Qi, S. Goes, K. Brashler, C. Perez, and W. Huang, ACS Catal. 6, 593 (2016).

  9. 9

    Z. Wei, J. Lou, C. Su, D. Guo, Y. Liu, and S. Deng, ChemSusChem 10, 1 (2017).

  10. 10

    L. Wu, J. Song, B. Zhou, T. Wu, T. Jiang, and B. Han, Chem. Asian J. 11, 2792 (2016).

  11. 11

    A. S. Amarasekara and M. A. Hasan, Catal. Commun. 60, 5 (2015).

  12. 12

    Y. Zhang, C. Chen, W. Gong, J. Song, H. Zhang, Y. Zhang, G. Wang, and H. Zhao, Catal. Commun. 93, 10 (2017).

  13. 13

    C. B. Chen, M. Y. Chen, B. Zada, Y. J. Ma, L. Yan, Q. Xu, W. Z. Li, Q. X. Guo, and Y. Fu, RSC Adv. 6, 112477 (2016).

  14. 14

    M. L. Testa, L. Corbel-Demailly, V. L. Parola, A. M. Venezia, and C. Pinel, Catal. Today 257, 291 (2015).

  15. 15

    K. Mustafin, F. Cárdenas-Lizana, and M. A. Keane, J. Chem. Technol. Biotechnol. 92, 2221 (2017).

  16. 16

    J. Quiroz, E. F. Mai, and V. T. da Silva, Top. Catal. 59, 148 (2016).

  17. 17

    Z. Xiao, H. Zhou, J. Hao, H. Hong, Y. Song, R. He, K. Zhi, and Q. Liu, Fuel 193, 322 (2017).

  18. 18

    F. Li, L. J. France, Z. Cai, Y. Li, S. Liu, H. Lou, J. Long, and X. Li, Appl. Catal. B 214, 67 (2017).

  19. 19

    Z. Xue, J. Jiang, G. Li, W. Zhao, J. Wang, and T. Mu, Catal. Sci. Technol. 6, 5374 (2016).

  20. 20

    H. Li, Z. Fang, and S. Yang, ACS Sustainable Chem. Eng. 4, 236 (2016).

  21. 21

    J. Zhu, Y. Tang, and K. Tang, RSC Adv. 6, 87294 (2016).

  22. 22

    Q. Xu, X. Li, T. Pan, C. Yu, J. Deng, Q. Guo, and Y. Fu, Green Chem. 18, 1287 (2016).

  23. 23

    X. Kong, S. Wu, Y. Jin, L. Liu, and J. Liu, Energ. Fuel 31, 12232 (2017).

  24. 24

    S. Ishikawa, D. R. Jones, S. Iqbal, C. Reece, D. J. Morgan, D. J. Willock, P. J. Miedziak, J. K. Bartley, J. K. Edwards, T. Murayama, W. Ueda, and G. J. Hutchings, Green Chem. 19, 225 (2017).

  25. 25

    S. Lomate, A. Sultana, and T. Fujitani, Catal. Sci. Technol. 7, 3073 (2017).

  26. 26

    Z. Yang, Y. B. Huang, Q. X. Guo, and Y. Fu, Chem. Commun. 49, 5328 (2013).

  27. 27

    J. Lv, Z. Rong, Y. Wang, J. Xiu, Y. Wang, and J. Qu, RSC Adv. 5, 72037 (2015).

  28. 28

    A. M. Hengne, B. S. Kadu, N. S. Biradar, R. C. Chikate, and C. V. Rode, RSC Adv. 6, 59753 (2016).

  29. 29

    M. Varkolu, V. Velpula, D. R. Burri, and S. R. R. Kamaraju, New J. Chem. 40, 3261 (2016).

  30. 30

    Z. Rong, Z. Sun, L. Wang, J. Lv, and Y. Wang, Catal. Lett. 144, 1766 (2014).

  31. 31

    B. Cai, X. C. Zhou, Y. C. Miao, J. Y. Luo, H. Pan, and Y. B. Huang, ACS Sustainable Chem. Eng. 5, 1322 (2017).

  32. 32

    X. Yang, T. Lu, C. Chen, L. Zhou, F. Wang, Y. Su, and J. Xu, Microporous Mesoporous Mater. 144, 176 (2011).

  33. 33

    L. Zhou, T. Lu, and J. Xu, M. Chen, C. Zhang, C. Chen, X. Yang, and J. Xu, Microporous Mesoporous Mater. 161, 76 (2012).

Download references

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (21503192), the China Postdoctoral Science Foundation (2017M612418), and the Henan Science and Technology Project (172102210490) for financial support.

Author information

Correspondence to Tianliang Lu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yanyan Xu, Lu, T., Bu, N. et al. Catalytic Conversion of Levulinic Acid to γ-Valerolactone over Hierarchical AlPO4-5 Supported Nickel Catalysts. Russ. J. Phys. Chem. 93, 2620–2627 (2019). https://doi.org/10.1134/S0036024419130338

Download citation

Keywords:

  • nickel
  • AlPO4-5
  • levulinic acid
  • γ-valerolactone