Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2771–2781 | Cite as

Magnetic, Optical Properties, and Photocatalytic Activity of the ZnFe2O4 Nanoparticles for the Degradation of the RhB Dye in Wastewater: Effects of Metal Salt and Surface Morphology

  • You Wang
  • Liguo Yang
  • Yadong Zhang
  • Huan Zhang
  • Junfu WeiEmail author
PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS

Abstract

Zinc ferrite nanoparticles are synthesized by a microwave assisted polyacrylamide gel route. The influence of different Zn salts includes zinc nitrate, zinc sulfate, zinc chloride, zinc acetate on the crystal structure, surface morphologies, optical properties, magnetic properties, and photocatalytic activity of the ZnFe2O4 nanoparticles were systematically studied. The ZnFe2O4 nanoparticles prepared using zinc nitrate have cubic spinel structure and exhibited good size uniformity and regularity. The absorption edge of ZnFe2O4 nanoparticles prepared using zinc nitrate as Zn salt shifted to a higher energy compared with that of ZnFe2O4 nanoparticles prepared by other Zn salts. The magnetic susceptibility indicates that the blocking temperature (TB) decreases from 94 to 35 K with Zn salt change from zinc nitrate to zinc sulfate due to the size effect. Interesting, zinc nitrate is used as Zn salt improves the photocatalytic activity for the degradation of rhodamine B (RhB) dye wastewater of ZnFe2O4 nanoparticles significantly due to introduced the surface species of OH to the ZnFe2O4 nanopartciles. The recycling experiment indicates that the ZnFe2O4 nanopartciles have a high stability. The photocatalytic mechanism of ZnFe2O4 nanopartciles have been systematically studied on the basis of the photocatalytic experiment and electrochemical test.

Keywords:

zinc ferrite polyacrylamide gel route blocking temperature photocatalytic activity photocatalytic mechanism 

Notes

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (51678409).

REFERENCES

  1. 1.
    R. C. Che, L. M. Peng, X. F. Duan, Q. Che, and X. L. Liang, Adv. Mater. 16, 401 (2004).CrossRefGoogle Scholar
  2. 2.
    A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002).CrossRefGoogle Scholar
  3. 3.
    J. M. Bai and J. P. Wang, Appl. Phys. Lett. 87, 152502 (2005).CrossRefGoogle Scholar
  4. 4.
    S. W. Cao, Y. J. Zhu, G. F. Cheng, and Y. H. Huang, J. Hazard. Mater. 171, 431 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    K. Raj and R. Moskowitz, J. Magn. Magn. Mater. 85, 233 (1990).CrossRefGoogle Scholar
  6. 6.
    R. Dom, A. S. Chary, R. Subasri, N. Y. Hebalkar, and P. H. Borse, Int. J. Energ. Res. 39, 1378 (2015).CrossRefGoogle Scholar
  7. 7.
    T. Tabari, D. Singh, and S. S. Jamali, J. Environ. Chem. Eng. 5, 931 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Mueller, D. Bresser, E. Paillard, M. Winter, and S. Passerini, J. Power Sources 236, 87 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Li, A. R. Wang, Y. Q. Lin, X. D. Liu, J. Fu, and L. H. Lin, J. Magn. Magn. Mater. 330, 96 (2013).CrossRefGoogle Scholar
  10. 10.
    F. Li, Y. Q. Qian, and A. Stein, Chem. Mater. 22, 3226 (2010).CrossRefGoogle Scholar
  11. 11.
    V. Blanco-Gutierrez, E. Urones-Garrote, M. J. Torralvo-Fernandez, and R. Saez-Puche, Chem. Mater. 22, 6130 (2010).CrossRefGoogle Scholar
  12. 12.
    C. W. Yao, Q. S. Zeng, G. F. Goya, T. Torres, J. F. Liu, H. P. Wu, M. Y. Ge, Y. W. Zeng, Y. W. Wang, and J. Z. Jiang, J. Phys. Chem. C 111, 12274 (2007).CrossRefGoogle Scholar
  13. 13.
    J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Z. Lv, Y. M. Ren, and Z. Fan, Mater. Chem. Phys. 223, 758 (2019).CrossRefGoogle Scholar
  14. 14.
    F. Li, H. Wang, L. Wang, and J. Wang, J. Magn. Magn. Mater. 309, 295 (2007).CrossRefGoogle Scholar
  15. 15.
    U. Kurtan, H. Erdemi, A. Baykal, and H. Güngünes, Ceram. Int. 42, 13350 (2016).CrossRefGoogle Scholar
  16. 16.
    P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, Optik 134, 99 (2017).CrossRefGoogle Scholar
  17. 17.
    A. F. S. Abu-Hani, S. T. Mahmoud, F. Awwad, and A. I. Ayesh, Sens. Actuators, B 241, 1179 (2017).CrossRefGoogle Scholar
  18. 18.
    C. Wang, Y. Li, Y. Ruan, J. Jiang, and Q. H. Wu, Mater. Today Energ. 3, 1 (2017).CrossRefGoogle Scholar
  19. 19.
    M. Amir, H. Gungunes, A. Baykal, M. A. Almessiere, H. Sözeri, I. Ercan, M. Sertkol, S. Asiri, and A. Manikandan, J. Supercond. Nov. Magn. 31, 3347 (2018).CrossRefGoogle Scholar
  20. 20.
    Z. Xing, Z. Ju, J. Yang, H. Xu, and Y. Qian, Nano Res. 5, 477 (2012).CrossRefGoogle Scholar
  21. 21.
    Y. Köseoglu, A. Baykal, M. S. Toprak, F. Gözüak, A. C. Basaran, and B. Aktas, J. Alloys Compd. 462, 209 (2008).CrossRefGoogle Scholar
  22. 22.
    S. F. Wang, X. T. Zu, G. Z. Sun, D. M. Li, C. D. He, X. Xiang, W. Liu, S. B. Han, and S. Li, Ceram. Int. 42, 19133 (2016).CrossRefGoogle Scholar
  23. 23.
    S. F. Wang, Q. Li, X. T. Zu, X. Xiang, W. Liu, and S. Li, J. Magn. Magn. Mater. 419, 464 (2016).CrossRefGoogle Scholar
  24. 24.
    D. F. Zhao, H. Yang, R. S. Li, J. Y. Ma, and W. J. Feng, Mater. Res. Innov. 18, 519 (2014).CrossRefGoogle Scholar
  25. 25.
    W. P. Wang, H. Yang, T. Xian, and J. L. Jiang, Mater. Trans. 53, 1586 (2012).CrossRefGoogle Scholar
  26. 26.
    F. Hu, S. Zhao, and X. Yin, J. Mater. Sci. Mater. Electron. 29, 16747 (2018).CrossRefGoogle Scholar
  27. 27.
    A. Bigham, F. Foroughi, M. Motamedi, and M. Rafienia, Ceram. Int. 44, 11798 (2018).CrossRefGoogle Scholar
  28. 28.
    M. L. Aparna, A. N. Grace, P. Sathyanarayanan, and N. K. Sahu, J. Alloys Compd. 745, 385 (2018).CrossRefGoogle Scholar
  29. 29.
    X. F. She and Z. Zhang, Nanoscale Res. Lett. 12, 211 (2017).CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Z. W. Wang, D. Schiferl, Y. S. Zhao, and C. O’Neill, J. Phys. Chem. Solids 64, 2517 (2003).CrossRefGoogle Scholar
  31. 31.
    Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic, and P. Colomban, Solid State Sci. 8, 908 (2006).CrossRefGoogle Scholar
  32. 32.
    S. Urcia-Romero, O. Perales-Pérez, and G. Gutiérrez, J. Appl. Phys. 107, 09A508 (2010).Google Scholar
  33. 33.
    G. Shemer, E. Tirosh, T. Livneh, and G. Markovich, J. Phys. Chem. C 111, 14334 (2007).CrossRefGoogle Scholar
  34. 34.
    W. Liu, Y. Chan, J. Cai, C. Leung, C. Mak, K. Wong, F. Zhang, X. Wu, and X. D. Qi, J. Appl. Phys. 112, 104306 (2012).CrossRefGoogle Scholar
  35. 35.
    X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, and J. P. Liu, Chem. Eng. J. 250, 164 (2014).CrossRefGoogle Scholar
  36. 36.
    N. Romcevic, R. Kostic, M. Romcevic, B. Hadzic, I. Kuryliszyn-Kudelska, W. Dobrowolski, and D. Sibera, Acta Phys. Polon. A 114, 1323 (2008).CrossRefGoogle Scholar
  37. 37.
    A. N. Ay, B. Zümreoglu-Karan, A. Temel, and V. Rives, Inorg. Chem. 48, 8871 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    A. Silambarasu, A. Manikandan, and K. Balakrishnan, J. Supercond. Nov. Magn. 30, 2631 (2017).CrossRefGoogle Scholar
  39. 39.
    P. Jeevanandam, Y. Koltypin, and A. Gedanken, Mater. Sci. Eng. B 90, 125 (2002).CrossRefGoogle Scholar
  40. 40.
    S. H. Xu, D. L. Feng, and W. F. Shanggua, J. Phys. Chem. C 113, 2463 (2009).CrossRefGoogle Scholar
  41. 41.
    G. L. Fan, Z. J. Gu, L. Yang, and F. Li, Chem. Eng. J. 155, 534 (2009).CrossRefGoogle Scholar
  42. 42.
    X. Y. Li, Y. Hou, Q. D. Zhao, and L. Z. Wang, J. Colloid Interf. Sci. 358, 102 (2011).CrossRefGoogle Scholar
  43. 43.
    K. Woo, H. J. Lee, P. Ahn and Y. S. Park, Adv. Mater. 15, 1761 (2010).CrossRefGoogle Scholar
  44. 44.
    Y. S. Wang, A. Muramatsu, and T. Sugimoto, Colloid Surf. A 134, 281 (1998).CrossRefGoogle Scholar
  45. 45.
    A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).CrossRefGoogle Scholar
  46. 46.
    G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, Phys. Status Solidi C 3, 3577 (2006).CrossRefGoogle Scholar
  47. 47.
    X. Guo, H. J. Zhu, M. S. Si, C. J. Jiang, D. S. Xue, Z. H. Zhang, and Q. Li, J. Phys. Chem. C 119, 30145 (2014).CrossRefGoogle Scholar
  48. 48.
    G. K. Zhang, M. Li, S. J. Yu, S. M. Zhang, B. B. Huang, and J. G. Yu, J. Colloid Interface Sci. 345, 467 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Z. H. Yuan, W. You, J. H. Jia, and L. Zhang, Chin. Phys. Lett. 15, 535 (1998).CrossRefGoogle Scholar
  50. 50.
    L. J. Han, X. Zhou, L. N. Wan, Y. F. Deng, and S. Z. Zhan, J. Environ. Chem. Eng. 2, 123 (2014).CrossRefGoogle Scholar
  51. 51.
    N. Kislov, S. S. Srinivasan, Yu. Emirov, and E. K. Stefanakos, Mater. Sci. Eng. B 153, 70 (2008).CrossRefGoogle Scholar
  52. 52.
    H. Fu, S. Zhang, T. Xu, Y. Zhu, and J. Chen, Environ. Sci. Technol. 42, 2085 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Z. Cui, H. Yang, and X. Zhao, Mater. Sci. Eng. B 229, 160 (2018).CrossRefGoogle Scholar
  54. 54.
    X. X. Wang, Y. Li, M. C. Liu, and L. B. Kong, Ionics 24, 363 (2018).CrossRefGoogle Scholar
  55. 55.
    X. Zhao, H. Yang, Z. Cui, R. Li, and W. Feng, Mater. Technol. 32, 870 (2017).CrossRefGoogle Scholar
  56. 56.
    S. Horikoshi, A. Saitou, H. Hidaka, and N. Serpone, Environ. Sci. Technol. 37, 5813 (2003).CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Z. X. Chen, D. Z. Li, W. J. Zhang, Y. Shao, T. W. Chen, M. Sun, and X. Z. Fu, J. Phys. Chem. C 113, 4433 (2009).CrossRefGoogle Scholar
  58. 58.
    S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, NY, 1980).CrossRefGoogle Scholar
  59. 59.
    R. Dom, R. Subasri, K. Radha, and P. H. Borse, Solid State Commun. 151, 470 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • You Wang
    • 1
  • Liguo Yang
    • 2
  • Yadong Zhang
    • 3
  • Huan Zhang
    • 1
  • Junfu Wei
    • 1
    Email author
  1. 1.School of Environmental and Chemical Engineering, Tianjin Polytechnic UniversityTianjinP.R. China
  2. 2.College of Chemistry and Environmental Engineering, Anyang Institute of TechnologyAnyangP.R. China
  3. 3.Mineral Processing Engineering Research Center, School of Chemistry and Environmental Engineering, China University of Mining and TechnologyXuzhouP.R. China

Personalised recommendations