Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2699–2702 | Cite as

Ionization Energies of LinCln – 1 (n = 3, 4, and 5) Clusters Studied by the Modified Knudsen Cell Mass Spectrometry Method

  • F. Veljković
  • B. Vurdelja
  • B. Rajčić
  • S. VeličkovićEmail author
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY

Abstract

In the present paper, ionization energies of LinCln – 1 (n = 3, 4, and 5) clusters were studied by means of the modified Knudsen cell mass spectrometry method, for the first time. The temperature dependence of the intensities of Li3Cl\(_{2}^{ + }\), Li4Cl\(_{3}^{ + }\) and Li5Cl\(_{4}^{ + }\) ions were measured in the interval 1128–1616, 1126–1435, and 1947–2278 K, respectively. The following ionization energies were obtained: IE(Li3Cl2) = 4.51 ± 0.2 eV, IE(Li4Cl3) = 4.18 ± 0.2 eV, and IE(Li4Cl3) = 5.05 ± 0.2 eV. A good correlation of the experimental results with the theoretical adiabatic ionization energy is recognized. Results are confirmation that these clusters can be classified as “superalkalis.”

Keywords:

LinCln – 1 “superalkali” clusters ionization energies Knudsen cell mass spectrometry 

Notes

ACKNOWLEDGMENTS

Supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, grant no. OI 172019.

REFERENCES

  1. 1.
    P. Nicholson and K. Evans, J. Occup. Med. 50, 27 (1998).Google Scholar
  2. 2.
    J. Kim, D. Shin, Y. Jung, S. M. Hwang, T. Song, Y. Kim, and U. Paik, J. Power Sources 377, 87 (2018).CrossRefGoogle Scholar
  3. 3.
    Y. N. Zhang, R. Z. Wang, and T. X. Li, Energy 156, 240 (2018).CrossRefGoogle Scholar
  4. 4.
    K. Gommed, G. Grossman, and F. Ziegler, J. Sol. Energy Eng. 126, 710 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Dai, T. Zhang, R. Qi, H. Zhao, T. Fei, and G. Lu, Sens. Actuators, B 253, 361 (2017).CrossRefGoogle Scholar
  6. 6.
    Y. Sakamura, J. Electrochem Soc. 157 (9), E135 (2010).CrossRefGoogle Scholar
  7. 7.
    A. Mullabaev, O. Tkacheva, V. Shishkin, V. Kovrov, Y. Zaikov, L. Sukhanov, and Y. Mochalov, J. Nucl. Mater 500, 2 (2018).CrossRefGoogle Scholar
  8. 8.
    W. Zhou and J. Zhang, J. Alloys Compd. 695, 2306 (2017).CrossRefGoogle Scholar
  9. 9.
    S. Natsui, T. Sudo, T. Kikuchi, and R. O. Suzuki, Electrochem. Commun. 81, 43 (2017).CrossRefGoogle Scholar
  10. 10.
    P. Hebant and G. S. Picard, Electrochim. Acta 43, 2071 (1998).CrossRefGoogle Scholar
  11. 11.
    P. Hebant and G. S. Picard, J. Mol. Struct.: THEOCHEM 426, 225 (1998).CrossRefGoogle Scholar
  12. 12.
    J. Berkowitz, C. H. Batson, and G. L. Goodman, J. Chim. Phys. 77, 631 (1980).CrossRefGoogle Scholar
  13. 13.
    S. Veličković, V. Dordević, J. Cvetićanin, J. Dustebek, M. Veljković, and O. Nešković, Rapid Commun. Mass Spectrom. 20, 3151 (2006).CrossRefGoogle Scholar
  14. 14.
    S. R. Veličković, J. B. Djustebek, F. M. Veljković, B. B. Radak, and M. V. Veljković, Rapid Commun. Mass Spectrom. 26, 443 (2012).CrossRefGoogle Scholar
  15. 15.
    G. L. Gutsev and A. I. Boldyrev, Chem. Phys. Lett. 92, 262 (1982).  https://doi.org/10.1016/0009-2614(82)80272-8 CrossRefGoogle Scholar
  16. 16.
    V. G. Zakrzewski, W. von Niessen, A. I. Boldyrev, and P. v. R. Schleyer, Chem. Phys. Lett. 197, 195 (1992).CrossRefGoogle Scholar
  17. 17.
    A. N. Alexandrova and A. I. Boldyrev, J. Phys. Chem. A 107, 554 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Ivanic, C. J. Marsden, and D. M. Hassett, J. Chem. Soc., Chem. Commun. 10, 822 (1993).CrossRefGoogle Scholar
  19. 19.
    S. Senturk, Z. Naturforsch. A: Phys. Sci. 66, 372 (2011).CrossRefGoogle Scholar
  20. 20.
    A. K. Srivastava and N. Misra, New J. Chem. 38, 2890 (2014).CrossRefGoogle Scholar
  21. 21.
    A. K. Srivastava and N. Misra, Mol. Phys. 112, 2621 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Aguado, A. Ayuela, J. M. Lopez, and J. A. Alonso, Phys. Rev. B 56, 15353 (1997).CrossRefGoogle Scholar
  23. 23.
    M. Milovanović, S. Veličković, F. Veljković, and S. Jerosimić, Phys. Chem. Chem. Phys. 19, 30481 (2017).CrossRefGoogle Scholar
  24. 24.
    O. M. Neskovic, M. V. Veljković, S. R. Veličković, L. T. Petkovska, and A. A. Peric-Grujic, Rapid Commun. Mass Spectrom. 17, 212 (2003).CrossRefGoogle Scholar
  25. 25.
    J. Djustebek, S. Veličković, S. Jerosimic, and M. Veljković, J. Anal. At. Spectrom. 26, 1641 (2011).CrossRefGoogle Scholar
  26. 26.
    S. R. Veličković, J. B. Dustebek, F. M. Veljković, and M. V. Veljković, J. Mass Spectrom. 47, 627 (2012).CrossRefGoogle Scholar
  27. 27.
    S. R. Veličković and F. M. Veljković, A. A. Perić-Grujić, B. B. Radak, and F. M. Veljković, Rapid Commun. Mass Spectrom. 25, 2327 (2011).CrossRefGoogle Scholar
  28. 28.
    S. R. Velicković, J. K. Vasil, J. N. Belosević Cavor, V. R. Djordjević, J. M. Cveticanin, J. B. Djustebek, M. V. Veljković, and O. M. Nesković, Chem. Phys. Lett. 448, 151 (2007).CrossRefGoogle Scholar
  29. 29.
    F. M. Veljković, J. B. Djustebek, M. V. Veljković, S. R. Veličković, and A. A. Perić-Grujić, Rapid Commun. Mass Spectrom. 26, 1 (2012).CrossRefGoogle Scholar
  30. 30.
    M. Heyrman, C. Chatillon, H. Collas, and J. L. Chemin, Rapid Commun. Mass Spectrom. 18, 163 (2004).CrossRefGoogle Scholar
  31. 31.
    V. L. Stolyarova and G. A. Semenov, Mass Spectrometric Study of the Vaporization of Oxide Systems (Wiley, Chichester, 1994).Google Scholar
  32. 32.
    E. Ya. Zanberg and N. I. Ionov, Surface Ionization (Nauka Moscow, 1969) [in Russian].Google Scholar
  33. 33.
    M. J. Dresser, Appl. Phys. 39, 338 (1968).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • F. Veljković
    • 1
  • B. Vurdelja
    • 2
  • B. Rajčić
    • 1
  • S. Veličković
    • 1
    Email author
  1. 1.University of Belgrade, Institute of Nuclear Sciences VincaBelgradeSerbia
  2. 2.Tarkett d.o.o.Backa PalankaSerbia

Personalised recommendations