Advertisement

Dielectric Properties of Pulsed Laser Deposited Nanoscale CeNi5 Thin Films

  • 3 Accesses

Abstract

Dielectric properties of pulsed laser deposited, nanoscale CeNi5 alloy layers, on glass or SiO2 substrate are described using the complex dielectric function. The UV–Vis–NIR spectral behavior of this function is studied separately for its real part ε1 (the dielectric constant or dielectric permittivity), and for its imaginary part ε2 (the dielectric loss function). The layers were obtained from grinded CeNi5 bulk powder using short, modulated laser pulses. The absolute reflectance of the obtained nanoscale alloy layers was measured at the 632.8 nm wavelength of a liquid nitrogen cooled and stabilized He–Ne source. This value was further used to renormalize the relative differential reflectance spectroscopy measurements performed in the UV‒Vis‒NIR domain. The obtained absolute reflectance spectra were processed using the Kramers–Krönig formalism, so that the real and imaginary parts of the complex dielectric function could be computationally determined, also leading to the calculation of the electron loss functions –Im ε–1 and –Im(1 + ε)–1. The behavior of these functions near the spectral inflexion points was determined using appropriate theoretical considerations. The variation of the dielectric functions was explained, electron density of states and the shape of the energy bands were inferred. This study reveals the layer thickness and deposition substrate dependent optical and electrical properties of the produced nanoscale CeNi5 structures.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Y. V. Knyazev, Y. I. Kuzmin, and A. G. Kuchin, J. Alloys Compd. 590, 557 (2011)

  2. 2

    X. F. Niu, Russ. J. Phys. Chem. A 92, 768 (2018)

  3. 3

    Z. W. Zhou, J. Q. Zhang, J. Qin, et al., Russ. J. Phys. Chem. A 92, 456 (2018)

  4. 4

    E. Apergis and N. Apergis, Energy Econ. 62, 33 (2017)

  5. 5

    M. A. Muller, D. Schweizer, and V. Seiler, J. Bus. Ethics 138, 627 (2016)

  6. 6

    V. A. Brodskiy, A. M. Gaydukova, and V. A. Kolesnikov, Russ. J. Appl. Chem. 88, 1446 (2015)

  7. 7

    O. V. Cheremisina, M. A. Ponomareva, D. E. Chirkst, et al., Russ. J. Phys. Chem. A 89, 119 (2015)

  8. 8

    L. O. Diehl, T. L. Gatiboni, P. A. Mello, et al., Ultrason. Sonochem. 40, 24 (2018)

  9. 9

    E. Vahidi and F. Zhao, J. Environ. Manage. 203, 255 (2017)

  10. 10

    H. L. Tang, W. T. Shuai, X. J. Wang, et al., Environ. Technol. 38, 1980 (2017)

  11. 11

    Q. Tan, J. Li, and Z. Xianlai, Crit. Rev. Environ. Sci. Technol. 45, 749 (2015)

  12. 12

    C. Tunsu, C. Ekberg, M. Foreman, et al., Trans. Inst. Min. Metall., Sect. C 125, 199 (2016)

  13. 13

    A. S. Bikmurzin, A. A. Lamberov, and R. G. Romanova, Russ. J. Appl. Chem. 88, 1268 (2015).

  14. 14

    R. Todoran, D. Todoran, D. Racolta, et al., Nanoscale Res. Lett. 11, 253 (2016).

  15. 15

    D. Todoran, R. Todoran, and Z. Szakacs, J. Optoelectron. Adv. 15, 54 (2013).

  16. 16

    T. Prodromakis and C. Papavassiliou, Appl. Surf. Sci. 255, 6989 (2009).

  17. 17

    D. Todoran, R. Todoran, E. M. Anitas, et al., Russ. J. Phys. Chem. A 91, 2613 (2017).

  18. 18

    R. Todoran, D. Todoran, and Z. Szakács, Spectrochim. Acta A 152, 591 (2015).

  19. 19

    R. Todoran, D. Todoran, and Z. Szakács, Russ. J. Phys. Chem. A 89, 2422 (2015).

  20. 20

    E. Burzo, Physics of Magnetic Phenomena (Acad. R. S. R., Bucuresti, 1979) [in Romanian].

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support of JINR Dubna-TU Cluj-Napoca Joint Research Projects.

Author information

Correspondence to Zs. Szakács.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Todoran, D., Todoran, R. & Szakács, Z. Dielectric Properties of Pulsed Laser Deposited Nanoscale CeNi5 Thin Films. Russ. J. Phys. Chem. 93, 2858–2863 (2019). https://doi.org/10.1134/S0036024419130296

Download citation

Keywords:

  • pulsed laser deposition
  • nanoscale CeNi5 thin films
  • dielectric constant
  • dielectric loss function
  • electron energy band structures