Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2613–2619 | Cite as

Oxidative Desulfurization Performance of CoAPO-5 Catalysts Synthesized by Novel Dynamic Hydrothermal Method

  • Xueni Sun
  • Wenjian Guan
  • Jingjing Zheng
  • Xiangxiang Zhao
  • Jun Wang
  • Chunxiang Huang
  • Hui ShaoEmail author
CHEMICAL KINETICS AND CATALYSIS
  • 3 Downloads

Abstract

CoAPO-5 molecular sieves were synthesized by a novel dynamic method. Crystallization, morphology and surface acidity were investigated by XRD, SEM, and Py-IR in details, and compared with samples prepared by traditional static method. Synthesis conditions, reaction time, temperature and the amount of catalyst were optimized as important parameters. The desulfurization performance of CoAPO-5 catalysts synthesized by two different methods was evaluated and compared. Also, some experiments were carried out to test selectivity and regenerability of CoAPO-5 catalysts synthesized by the dynamic method. Finally, ODS reaction kinetics and mechanism using CoAPO-5 was studied and discussed. Results indicated that dynamic method greatly shortened crystallization time, while kept the same structure and sulfur removal capacity of CoAPO-5. The dynamic synthesis method could be considered as an alternative method to prepare porous molecular sieves.

Keywords:

dynamic method static method CoAPO-5 molecular sieves catalysis oxidative desulfurization 

Notes

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foundation of China (21706017), Natural Science Foundation of Jiangsu Province (BK20150262), Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology (BM2012110).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    W. Liu, X. Liu, and Y. Yang, Fuel 117, 184 (2014).CrossRefGoogle Scholar
  2. 2.
    X. Sun, S. Hussain, M. Chi, X. Cheng, and B. J. Tatarchuk, Fuel 193, 95 (2017).CrossRefGoogle Scholar
  3. 3.
    O. Y. Gutierrez, G. A. Fuentes, C. Salcedo, and T. Klimova, Catal. Today 116, 485 (2006).CrossRefGoogle Scholar
  4. 4.
    J. T. Sampanthar, H. Xiao, J. Dou, T. Y. Nah, X. Rong, and W. P. Kwan, Appl. Catal. B 63, 85 (2006).CrossRefGoogle Scholar
  5. 5.
    Z. X. Jiang, Y. Liu, and X. P. Sun, Chin. J. Catal. 24, 649 (2003).Google Scholar
  6. 6.
    S. Cheng, Y. Liu, and J. Gao, Chin. J. Catal. 27, 547 (2006).CrossRefGoogle Scholar
  7. 7.
    I. V. Babich and J. A. Moulijn, Fuel 82, 607 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Y. Song, G. Li, X. S. Wang, and Y. J. Xu, Catal. Today 149, 127 (2010).CrossRefGoogle Scholar
  9. 9.
    D. Xie, Q. He, Y. Su, T. Wang, R. Xu, and B. Hu, Chin. J. Catal. 36, 1205 (2015).CrossRefGoogle Scholar
  10. 10.
    V. Hulea, P. Moreau, and F. D. Renzo, J. Mol. Catal. A: Chem. 111, 325 (2007).CrossRefGoogle Scholar
  11. 11.
    Z. Liu, X. Song, and J. Li, Inorg. Chem. 51, 1969 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Zhang, P. Q. Gao, and H. L. Qin, Inn. Mong. Petrochem. Ind. 22, 32 (2010).Google Scholar
  13. 13.
    V. Sebastian, S. Irusta, and R. Mallada, Appl. Catal. A 366, 242 (2009).CrossRefGoogle Scholar
  14. 14.
    L. Zhou, T. Lu, J. Xu, M. Chen, C. Zhang, C. Chen, X. Yang, and J. Xu, Microporous Mesoporous Mater. 161, 76 (2012).CrossRefGoogle Scholar
  15. 15.
    V. Ravat and P. Aghalayam, Appl. Catal. A 289, 9 (2010).CrossRefGoogle Scholar
  16. 16.
    X. Qi, L. Zhang, W. Xie, T. Ji, and R. Li, Appl. Catal. A 276, 89 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. J. Lee, Y. W. Kim, N. Viswanadham, K. W. Jun, and J. W. Bae, Appl. Catal. A 274, 18 (2010).CrossRefGoogle Scholar
  18. 18.
    W. Dai, W. Kong, G. Wu, N. Li, L. Li, and N. Guan, Catal. Commun. 12, 535 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Song and J. Mu, Chem. Ind. Eng. Pro. (China) 30, 303 (2011).Google Scholar
  20. 20.
    J. Zheng, M. Li, Y. Luo, B. Zong, and X. Shu, Acta Petrol. Sin.: Pet. Process. Sect. 26, 336 (2010).Google Scholar
  21. 21.
    S. Zhang, S. Chen, P. Dong, Z. Ji, J. Zhao, and K. Xu, Catal. Lett. 118, 109 (2007).CrossRefGoogle Scholar
  22. 22.
    T. Hajiashrafi and A. N. Kharat, React. Kinet. Mech. Catal. 108, 417 (2013).CrossRefGoogle Scholar
  23. 23.
    F. Bandarchian and M. Anbia, J. Nat. Gas Sci. Eng. 26, 1380 (2015).CrossRefGoogle Scholar
  24. 24.
    B. Li, P. Tian, Y. Qi, L. Zhang, S. Xu, X. Su, D. Fan, and Z. Liu, Chin. J. Catal. 34, 593 (2013).CrossRefGoogle Scholar
  25. 25.
    Y. Liu, X. Ren, G. Yang, L. Zhang, and Q. Pei, Mod. Chem. Ind. 34, 100 (2014).Google Scholar
  26. 26.
    G. M. Pasquale and E. Senderov, US Patent No. WO2003/043937 (May 30, 2003).Google Scholar
  27. 27.
    Y. Chen, P. Liu, and Z. W. Yu, Key Eng. Mater. 609, 288 (2011).Google Scholar
  28. 28.
    X. Li, Z. Wang, and Z. Jie, Chin. J. Catal. 32, 217 (2011).CrossRefGoogle Scholar
  29. 29.
    X. Ji, Z. An, J. Zhao, Q. Niu, L. Song, and B. Mao, Fine Chem. 33, 406 (2016).Google Scholar
  30. 30.
    Y. Wei, Chem. Ind. Times 2, 9 (2006).Google Scholar
  31. 31.
    J. Wu, R. R. Gatte, and T. G. Roberie, US Patent No. 5389358 (1997).Google Scholar
  32. 32.
    S. Hui, C. Xia, and B. Wang, Acta Pet. Sin. Pet. Process. Sect. 28, 933 (2012).Google Scholar
  33. 33.
    A. R. Macintosh, Master’s Thesis (Univ. of Western Ontario, Ontario, 2012).Google Scholar
  34. 34.
    J. Wang, J. Song, C. Yin, Y. Ji, Y. Zou, and F. S. Xiao, Microporous Mesoporous Mater. 117, 561 (2009).CrossRefGoogle Scholar
  35. 35.
    X. Meng, Y. Wang, L. Duan, Y. Qin, W. Yu, Q. Wang, S. Dong, Y. Ruan, H. Wang, and L. Song, J. Nanosci. Nanotechnol. 14, 7174 (2014).CrossRefGoogle Scholar
  36. 36.
    T. Klimova, J. Reyes, O. Gutierrez, and L. Lizama, Appl. Catal. A 335, 159 (2008).CrossRefGoogle Scholar
  37. 37.
    M. L. Occelli, S. Biz, A. Auroux, and G. J. Ray, Microporous Mesoporous Mater. 26, 193 (1998).CrossRefGoogle Scholar
  38. 38.
    N. S. Gould and B. Xu, J. Catal. 358, 80 (2018).CrossRefGoogle Scholar
  39. 39.
    L. E. Sandoval-Diaz, J. A. Gonzalez-Amaya, and C. A. Trujillo, Microporous Mesoporous Mater. 215, 229 (2015).CrossRefGoogle Scholar
  40. 40.
    S. Hui, J. Chen, and J. Zheng, Ind. Eng. Chem. Res. 45, 150130105502001 (2015).Google Scholar
  41. 41.
    X. He, W. Song, and H. An, Chem. Ind. Times 27, 6 (2016).Google Scholar
  42. 42.
    S. Liu, B. Wang, and B. Cui, Fuel 87, 422 (2008).CrossRefGoogle Scholar
  43. 43.
    M. Te and C. Fairbridge, Appl. Catal. A 219, 267 (2001).CrossRefGoogle Scholar
  44. 44.
    Y. Yong, Z. G. Leng, and Y. Q. Yan, J. Chem. Eng. Chin. Univ. 29, 1025 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Xueni Sun
    • 1
    • 2
  • Wenjian Guan
    • 2
  • Jingjing Zheng
    • 1
  • Xiangxiang Zhao
    • 1
  • Jun Wang
    • 1
  • Chunxiang Huang
    • 1
  • Hui Shao
    • 1
    Email author
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou UniversityChangzhouP. R. China
  2. 2.Department of Chemical Engineering, Auburn UniversityAuburnUSA

Personalised recommendations