Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2749–2757 | Cite as

Structural, Electronic, Elastic Properties, and Phase Transitions of Type-I and Type-VIII Sr8Al16Sn30 Clathrates from First-principles Calculations

  • Lanxian ShenEmail author
  • Decong LiEmail author
  • Jiali ChenEmail author
  • Jianhua LuEmail author
  • Wen GeEmail author
  • Shukang DengEmail author
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 4 Downloads

Abstract

In this work, the phase transitions, the elastic properties, and the electronic properties of Sr8Al16Sn30 under different pressures are investigated by first-principle calculations based on density functional theory. The E–V curves show that the type-VIII is the stable ground state phase, while the type-I is considered to be metastable at the lowest energy. Ignoring the temperature effect, type-VIII clathrate is always more stable than type-I, and the indication of phase transitions from type-I to type-VIII structure is not observed under increasing hydrostatic pressure. The obtained elastic constant values indicating that two structures under 0 and 3 GPa are stable, and not stable under 7 GPa. The dependences of the elastic constants cij, the elastic modulus, the Poisson ratio, the brittle and ductile behavior, and the elastic anisotropy on pressure in two structures are further analyzed. The electronic structures of type-I and type-VIII clathrates significantly change under increased pressure. The type-I clathrate with a narrow gap turns into the metal, and for type-VIII the band gap decreases in 3 GPa and the band gap increases in 7 GPa. This show that pressure tuning plays an important role in improving material properties.

Keywords:

Sr8Al16Sn30 phase transition elastic properties electronic structure first-principle calculations 

Notes

ACKNOWLEDGMENTS

This work was supported by National Nature Science Foundation of China (grant nos. 61864012, 21701140).

REFERENCES

  1. 1.
    Y. Saiga, K. Suekuni, S. K. Deng, T. Yamamoto, Y. Kono, N. Ohya, and T. Takabatake, J. Alloys Compd. 507, 1 (2010).CrossRefGoogle Scholar
  2. 2.
    M. A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901 (2008).CrossRefGoogle Scholar
  3. 3.
    K. Suekuni, M. A. Avila, K. Umeo, H. Fukuoka, S. Yamanaka, T. Nakagawa, and T. Takabatake, Phys. Rev. B 77, 235119 (2008).CrossRefGoogle Scholar
  4. 4.
    X. Shi, L. Chen, and C. Uher, Int. Mater. Rev. 61, 379 (2016).CrossRefGoogle Scholar
  5. 5.
    S. K. Deng, Y. Saiga, K. Suekuni, and T. Takabatake, J. Appl. Phys. 108, 073705 (2010).CrossRefGoogle Scholar
  6. 6.
    S. K. Deng, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 109, 103704 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. Kono, N. Ohya, Y. Saiga, K. Suekuni, and T. Takabatake, J. Electron. Mater. 40, 845 (2011).CrossRefGoogle Scholar
  8. 8.
    D. Y. Meng, L. X. Shen, D. C. Li, X. X. Shai, and S. K. Deng, Acta Phys. Sin. 63, 177401 (2014).Google Scholar
  9. 9.
    Y. X. Chen, B. L. Du, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 46, 205302 (2013).Google Scholar
  10. 10.
    B. Du, Y. Saiga, K. Kajisa, and T. Takabatake, J. Appl. Phys. 111, 013707 (2012).CrossRefGoogle Scholar
  11. 11.
    Y. Kono, N. Ohya, T. Taguchi, K. Suekuni, T. Takabatake, S. Yamamoto, and K. Akai, J. Appl. Phys. 107, 123720 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Kono, K. Akai, N. Ohya, Y. Saiga, K. Suekuni, T. Takabatake, and S. Yamamoto, Mater. Trans. 53, 636 (2012).CrossRefGoogle Scholar
  13. 13.
    Y. Li, J. Gao, N. Chen, Y. Liu, Z. P. Luo, R. H. Zhang, X. Q. Ma, and G. H. Cao, Phys. B (Amsterdam, Neth.) 403, 1140 (2008).Google Scholar
  14. 14.
    K. Akai, K. Kishimoto, T. Koyanagi, Y. Kono, and S. Yamamoto, J. Electron. Mater. 43, 2081 (2014).CrossRefGoogle Scholar
  15. 15.
    D. C. Li, L. Fang, S. K. Deng, K. Y. Kang, L. X. Shen, W. H. Wei, and H. B. Ruan, Phys. B (Amsterdam, Neth.) 407, 1238 (2012).Google Scholar
  16. 16.
    H. G. von Schnering, W. Carrillo-Cabrera, R. Kröner, E.-M. Peters, and K. Peters, Z. Kristallogr.-New Cryst. Struct. 213, 677 (1998).Google Scholar
  17. 17.
    S. Leoni, W. Carrillo-Cabrera, and Y. Grin, J. Alloys Compd. 350, 113 (2003).CrossRefGoogle Scholar
  18. 18.
    M. C. Payne, M. P. Teter, D. C. Allan, and T. A. Arias, Rev. Mod. Phys. 64, 1045 (1992).CrossRefGoogle Scholar
  19. 19.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  20. 20.
    B. Eisenmann, H. Schafer, and R. Zagler, J. Less-Common. Met. 118, 43 (1986).CrossRefGoogle Scholar
  21. 21.
    N. P. Blake, D. Bryan, S. Latturner, L. Møllnitz, G. D. Stucky, and H. Metiu, J. Chem. Phys. 114, 10063 (2001).CrossRefGoogle Scholar
  22. 22.
    E. N. Nenghabi and C. W. Myles, Phys. Rev. B 78, 195202 (2008).CrossRefGoogle Scholar
  23. 23.
    G. K. H. Madsen, K. Schwarz, P. Blaha, and D. J. Singh, Phys. Rev. B 68, 125212 (2003).CrossRefGoogle Scholar
  24. 24.
    K. Moriguchi, S. Munetoh, A. Shintani, and T. Motooka, Phys. Rev. B 64, 195409 (2001).CrossRefGoogle Scholar
  25. 25.
    S. Saita and A. Oshiyama, Phys. Rev. B 51, 2628 (1995).CrossRefGoogle Scholar
  26. 26.
    O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).CrossRefGoogle Scholar
  27. 27.
    R. Hill, Proc. Phys. Soc. London A 65,349 (1952).CrossRefGoogle Scholar
  28. 28.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928).Google Scholar
  29. 29.
    A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).CrossRefGoogle Scholar
  30. 30.
    D. Connétable and O. Thomas, Phys. Rev. B 79, 094101 (2009).CrossRefGoogle Scholar
  31. 31.
    M. B. Kanoun, S. G. Said, A. H. Reshak, and A. E. Merad, Solid State Sci. 12, 887 (2010).CrossRefGoogle Scholar
  32. 32.
    Z. W. Huang, Y. H. Zhao, H. Hou, and P. D. Han, Phys. B (Amsterdam, Neth.) 407, 1075 (2012).Google Scholar
  33. 33.
    S. F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  34. 34.
    P. Ravindran, L. Fast, P. A. Korzhavyi, B. Johnnsson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).CrossRefGoogle Scholar
  35. 35.
    K. B. Panda and K. S. Chandran, Comput. Mater. Sci. 35, 134 (2006).CrossRefGoogle Scholar
  36. 36.
    N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. J. Metiu, Chem. Phys. 115, 8060 (2001).Google Scholar
  37. 37.
    X. Gao, K. Uehara, D. D. Klug, S. Patchkovskii, J. S. Tse, and M. T. Tritt, Phys. Rev. B 72, 125202 (2005).CrossRefGoogle Scholar
  38. 38.
    D. J. Singh and I. I. Mazin, Phys. Rev. B 56, R1650 (1997).CrossRefGoogle Scholar
  39. 39.
    T. Uemura, K. Koga, K. Akai, and M. Matsuura, Trans. Mater. Res. Soc. Jpn. 31, 311 (2006).Google Scholar
  40. 40.
    T. Iitaka, Phys. Rev. B 75, 012106 (2007).CrossRefGoogle Scholar
  41. 41.
    J. F. Meng, N. V. C. Shekar, J. V. Badding, and G. S. Nolas, J. Appl. Phys. 89, 1730 (2001).CrossRefGoogle Scholar
  42. 42.
    R. Chasmar and R. Stratton, J. Electron. Control 7, 52 (1959).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology, Yunnan Normal UniversityKunmingChina
  2. 2.College of Optoelectronic Engineering, Yunnan Open UniversityKunmingChina

Personalised recommendations