Advertisement

Pure and Cu-Doped ZnO Nanoparticles: Hydrothermal Synthesis, Structural, and Optical Properties

Abstract

Pure and Cu-doped zinc oxide (Zn1 –xCuxO with x = 0.00, 0.05, 0.10, and 0.15) nanoparticles were prepared via hydrothermal synthesis using a solution of zinc sulfate (ZnSO4) as precursor, p-phenylenediamine as structure-directing agent in the presence of different amounts of CuSO4 and NaOH. XRD, Raman, UV–Vis, and PL techniques were used to characterize the as-synthesized samples. The XRD analysis reveals that the average particle size of pure ZnO is 13.50 nm. It decreased to 12.11 nm for the Cu-doped sample Zn0.95Cu0.05O, then to 11.00 nm when x = 0.15 (Zn0.85Cu0.15O). The optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from UV–Vis spectra. It turned out to have decreased from 3.18  to 3.11  eV as the amount of Cu increases up from x = 0 to 0.15. The photoluminescence study shows that the introduction of Cu into pure ZnO causes a decrease in surface defects, such as oxygen vacancy and zinc vacancy.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, Nano Lett. 11, 666 (2011).

  2. 2

    M. Sathya, A. Claude, P. Govindasamy, and K. Sudha, Adv. Appl. Sci. Res. 3, 2591 (2012).

  3. 3

    K. Naeem and F. Ouyang, Phys. B 405, 221 (2010).

  4. 4

    M. Seo, Y. Jung, D. Lim, D. Cho, and Y. Jeong, Mater. Lett. 92, 177 (2013).

  5. 5

    O. V. Kibis and M. E. Portnoi, Phys. E (Amsterdam, Neth.) 40, 1899 (2008).

  6. 6

    A. Moulahi and F. Sediri, Mater. Res. Bull. 48, 3723 (2013).

  7. 7

    H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363 (1994).

  8. 8

    U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

  9. 9

    D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

  10. 10

    K. Naeem and F. Ouyang, Phys. B (Amsterdam, Neth.) 405, 221 (2010).

  11. 11

    C. C. Chen, Ma. Wanhong, and J. C. Zha, Curr. Org. Chem. 14, 630 (2010).

  12. 12

    J. C. Sin, S. M. Lam, K. T. Lee, and A. R. Mohamed, Ceram. Int. 39, 5833 (2013).

  13. 13

    F. Kermiche, A. Taabouche, F. Hanini, S. Menakh, A. Bouabellou, Y. Bouachiba, T. Kerdja, Ch. Benazzouz, M. Bouafia, and S. Amara, Int. J. Neuropsychopharm. 6, 93 (2013).

  14. 14

    S. Karamat, R. S. Rawat, P. Lee, T. L. Tan, and R. V. Ramanujan, Proc. Nat. Sci. Mater. 24, 142 (2014).

  15. 15

    A. M. Ganose and D. O. Scanlon, J. Mater. Chem. C 4, 1467 (2016).

  16. 16

    X.-Y. Feng, Z. Wang, C.-W. Zhang, and P.-J. Wang, J. Nanomater. 2013, 181979 (2013). https://doi.org/10.1155/2013/181979

  17. 17

    A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, Sh. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 44, L643 (2005).

  18. 18

    S. Sarkar and D. Basak, Appl. Phys. Lett. 103, 041112 (2013).

  19. 19

    H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Sens. Actuators, B 115, 247 (2006).

  20. 20

    D. B. Buchholz, R. P. H. Chang, J. Y. Song, and J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).

  21. 21

    G. Z. Xing, J. B. Yi, J. G. Tao, T. Liu, L. M. Wong, Z. Zhang, G. P. Li, S. J. Wang, J. Ding, C. Sum, C. H. A. Huan, and T. Wu, Adv. Mater. 20, 3521 (2008).

  22. 22

    A. R. Kim, J.-Y. Lee, B. R. Jang, J. Y. Lee, H. S. Kim, and N. W. Jang, J. Nanosci. Nanotechnol. 11, 6395 (2011).

  23. 23

    S. Kumar, B. Koo, C. Lee, S. Gautam, K. Chae, S. Sharma, and M. Knobel, Funct. Mater. Lett. 4, 17 (2011).

  24. 24

    G. Rey, A. Redinger, J. Sendler, T. P. Weiss, M. Thevenin, M. Guennou, B. El Adib, and S. Siebentritt, Appl. Phys. Lett. 105, 112106 (2014).

  25. 25

    A. Moulahi and F. Sediri, Optics 127, 7586 (2016).

  26. 26

    S. Satheeskumar, V. Jeevanantham, and D. Tamilselvi, J. Ovonic Res. 14, 9 (2018).

  27. 27

    Z. Feng, Y. Wei, R. Liu, D. Yan, Y.-Ch. Wang, J. Luo, A. Senyshyn, C. Cruz, W. Yi, J.-W. Mei, Z. Y. Meng, Y. Shi, and S. Li, Phys. Rev. B 98, 155127 (2018).

  28. 28

    P. Labhane, V. Huse, L. Patle, A. Chaudhari, and G. Sonawane, J. Mater. Sci. Chem. Eng. 3, 39 (2015).

  29. 29

    J. Diouri, J. P. Lascaray, and M. El Amrani, Phys. Rev. B 31, 7995 (1985).

  30. 30

    R. B. Bylsma, W. M. Becker, J. Kossut, U. Debska, and D. Yoder-Short, Phys. Rev. B 33, 8207 (1986).

  31. 31

    I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986).

  32. 32

    C. Ton-That, M. Foley, and M. R. Phillips, Nanotechnology 19, 415606 (2008).

  33. 33

    C. Karunakaran, P. Gomathisankar, and G. Manikandan, Mater. Chem. Phys. 123, 585 (2010).

  34. 34

    A. Umar, B. Karunagaran, E. K. Suh, and Y. B. Hahn, Nanotechnology 17, 4072 (2006).

  35. 35

    S. T. Kuo, W. H. Tuan, J. Shieh, and S. F. Wang, J. Eur. Ceram. Soc. 27, 4521 (2007).

  36. 36

    R. S. Zeferino, M. B. Flores, and U. Pal, J. App. Phys. 109, 014308 (2011).

  37. 37

    L. Dai, X. L. Chen, W. J. Wang, T. Zhou, and B. Q. Hu, J. Phys.: Condens. Matter 15, 2221 (2003).

  38. 38

    K. A. Salman, K. Omar, and Z. Hassan, Sol. Energy 86, 541 (2012).

  39. 39

    A. Sharma, B. P. Singh, and S. Dhar, Surf. Sci. 606, L13 (2012).

  40. 40

    M. Šćepanovic, M. Grujić-Brojčin, K. Vojisavljević, S. Bernik, and T. Srećković, J. Raman Spectrosc. 41, 914 (2010).

  41. 41

    S. K. Panda and C. Jacob, Appl. Phys. A 96, 805 (2009).

  42. 42

    J. Marquina, Ch. Power, and J. González, Rev. Mex. Fis. 53, 170 (2007).

Download references

ACKNOWLEDGMENTS

We thank Mr. Tarek Fezai, who linguistically revised and edited the whole paper.

Author information

Correspondence to F. Sediri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ben Saad, L., Soltane, L. & Sediri, F. Pure and Cu-Doped ZnO Nanoparticles: Hydrothermal Synthesis, Structural, and Optical Properties. Russ. J. Phys. Chem. 93, 2782–2788 (2019). https://doi.org/10.1134/S0036024419130259

Download citation

Keywords:

  • hydrothermal
  • ZnO
  • Cu doping
  • photoluminescence
  • optical properties