Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2703–2709 | Cite as

Synthesis, Structural Characterization, Spectroscopic Properties, and Theoretical Investigation of Siderol Acetate

  • Züleyha ÖzerEmail author
  • Turgut Kılıç
  • Sema Çarıkçı
  • Akın Azizoglu
STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • 7 Downloads

Abstract

In the present study, siderol acetate (1) was synthesized from siderol isolated from endemic Sideritis species, then its chemical structure was determined by using various spectroscopic methods (FT-IR, 1H NMR, and 13C NMR). The geometrical parameters, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values for siderol acetate in the ground state have been calculated using the Density Functional Theory (DFT) and Hartree–Fock (HF) methods with the 6-31G(d) basis set. The calculated vibrational frequencies and 1H and 13C NMR chemical shifts have been compared with experimental values. A combined study based on NMR data and quantum-mechanical calculations using DFT/GIAO indicate that 1 is the correct structure of the title molecule.

Keywords:

terpenoids IR spectrum DFT ab initio solvent effect 

Notes

ACKNOWLEDGMENTS

This work was partially supported by University of Balikesir, research grant no. 2017/159.

REFERENCES

  1. 1.
    I. Aslan, T. Kılıç, A. C. Gören, and G. Topçu, Ind. Crops Products 23, 171 (2006).CrossRefGoogle Scholar
  2. 2.
    E. González-Burgos, M. E. Carretero, and M. P. Gómez-Serranillos, J. Ethnopharmacol. 135, 209 (2011).CrossRefGoogle Scholar
  3. 3.
    A. Güvenç, Y. Okada, E. Küpeli Akkol, H. Duman, T. Okuyama, and I. Çalıs, Food Chem. 118, 686 (2010).CrossRefGoogle Scholar
  4. 4.
    A. Azizoglu, Z. Özer, and T. Kılıç, Collect. Czech. Chem. Comm. 76, 95 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Wang and X. Wang, Spectrosc. Chim. Acta A 135, 568 (2015).CrossRefGoogle Scholar
  6. 6.
    J. Toušek, S. van Miert, L. Pieters, G. van Baelen, S. Hostyn, B. U. Maes, G. Lemiere, R. Dommisse, and R. Marek, Magn. Reson. Chem. 46, 42 (2008).CrossRefGoogle Scholar
  7. 7.
    O. García-Beltrán, J. Soto-Delgado, P. Iturriaga-Vásquez, C. Areche, and B. K. Cassels, J. Chil. Chem. Soc. 57, 1323 (2012).CrossRefGoogle Scholar
  8. 8.
    L. Gong, W. Fang, F. Liu, X. Shan, L. Sheng, and Z. Wang, J. Electron Spectrosc. Relat. Phenom. 182, 134 (2010).CrossRefGoogle Scholar
  9. 9.
    M. T. Bilkan, Russ. J. Phys. Chem. A 92, 1920 (2018).CrossRefGoogle Scholar
  10. 10.
    T. S. Vishkaee and R. Fazaeli, Russ. J. Phys. Chem. A 92, 1219 (2018).CrossRefGoogle Scholar
  11. 11.
    S. A. Miresmaeili and R. Ghiasi, Russ. J. Phys. Chem. 91, 1026 (2017).CrossRefGoogle Scholar
  12. 12.
    Z. O. Sagir, S. Carikci, T. Kılıç, and A. C. Goren, Int. J. Food Prop. 20, 2994 (2017).CrossRefGoogle Scholar
  13. 13.
    B. M. Fraga, Phytochem. 76, 7 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Topçu, A. Ertas, M. Öztürk, D. Dincel, T. Kılıç, and B. Halfon, Phytochem. Letters 4, 436 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Çarıkçı, Ç. Çöl, T. Kılıç, and A. Azizoglu, Rec. Nat. Prod. 1, 44 (2007).Google Scholar
  16. 16.
    M. Bruno, F. Piozzi, N. A. Arnold, K. H. C. Başer, N. Tabanca, and N. Kirimer, Turk. J. Chem. 29, 61 (2005).Google Scholar
  17. 17.
    A. Venditti, A. Bianco, F. Maggi, and M. Nicoletti, Rec. Nat. Prod. 27, 1408 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Kılıç, Molecules 11, 257 (2006).CrossRefGoogle Scholar
  19. 19.
    M. J. Frisch et al., Gaussian 09, Revision A02 (Gaussian Inc., Pittsburgh, PA, 2009).Google Scholar
  20. 20.
    V. Barone, M. Cossi, and J. Tomasi, J. Comp. Chem. 19, 404 (1998).CrossRefGoogle Scholar
  21. 21.
    I. B. Davydova, S. A. Sharapova, G. M. Kuramshina, and Y. A. Pentin, Russ. J. Phys. Chem. A 89, 1843 (2015).CrossRefGoogle Scholar
  22. 22.
    S. Cıtak, Z. Ozer Sagır, S. Carıkcı, T. Kılıç, and A. Azizoglu, Rev. Roum. Chim. 59, 227 (2014).Google Scholar
  23. 23.
    G. K. Pierens, J. Comp. Chem. 35, 1388 (2014).CrossRefGoogle Scholar
  24. 24.
    I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Oxford Univ. Press, Oxford, 2010).CrossRefGoogle Scholar
  25. 25.
    L. Găină, I. Torje, E. Gal, A. Lupan, C. Bischin, R. Silaghi-Dumitrescu, G. Damian, P. Lönnecke, C. Cristea, and L. Silaghi-Dumitrescu, Dyes Pigm. 102, 315 (2014).CrossRefGoogle Scholar
  26. 26.
    V. Bucila, M. Stefu, and B. Szefler, Studia UBB Chem. 58, 101 (2013).Google Scholar
  27. 27.
    V. L. Furer, A. E. Vandyukov, V. Tripathi, J. P. Majoral, A. M. Caminade, and V. I. Kovalenko, J. Mol. Struct. 1162, 1 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Züleyha Özer
    • 1
    Email author
  • Turgut Kılıç
    • 2
  • Sema Çarıkçı
    • 3
  • Akın Azizoglu
    • 3
  1. 1.Altinoluk Vocational School, University of BalikesirEdremitBalikesirTurkey
  2. 2.Department of Science Educations, Faculty of Necatibey Education, University of BalikesirBalikesirTurkey
  3. 3.Department of Chemistry, Faculty of Arts and Sciences, University of BalikesirBalikesirTurkey

Personalised recommendations