Direct Hydroxylation of Benzene to Phenol by Dielectric Barrier Discharge Plasma


Direct synthesis of phenol from benzene was realized using atmospheric dielectric barrier discharge (DBD) plasma. In the process, various experimental parameters such as irradiation time, electrode height, and discharge power were found to play crucial roles in determining the yield and selectivity of phenol. Also, serious carbonization phenomenon was observed at the surface of used electrode due to the extensive interaction between benzene and electrode, which greatly inhibited the hydroxylation of benzene to phenol. To resolve this issue, silica coated electrode was employed, and significant improvement of conversion efficiency was obtained. The yield of phenol as high as 19.5% could be obtained in the optimal condition, and its selectivity was 83.3% based on the analysis of gas chromatography-mass spectrometry.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    J. Xu, Y. Chen, Y. Hong, H. Zheng, D. Ma, B. Xue, and Y. X. Li, Appl. Catal. A 549, 31 (2017).

  2. 2

    R. J. Schmidt, Appl. Catal., A 280, 89 (2005).

  3. 3

    K. Hirose, K. Ohkubo, and S. Fukuzumi, Chem. Eur. J. 22, 12904 (2016).

  4. 4

    Y. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto, and S. Itoh, J. Am. Chem. Soc. 137, 5867 (2015).

  5. 5

    P. Borah, X. Ma, K. T. Nguyen, and Y. Zhao, Angew. Chem. Int. Ed. 51, 7756 (2012).

  6. 6

    A. J. J. Koekkoek, W. Kim, V. Degirmenci, H. Xin, R. Ryoo, and E. J. M. Hensen, J. Catal. 299 (Suppl. C), 81 (2013).

  7. 7

    T. Tsuji, A. A. Zaoputra, Y. Hitomi, K. Mieda, T. Ogura, Y. Shiota, K. Yoshizawa, H. Sato, and M. Kodera, Angew. Chem. Int. Ed. 56, 7779 (2017).

  8. 8

    G. Wen, S. Wu, B. Li, C. Dai, and D. S. Su, Angew. Chem. Int. Ed. 54, 4105 (2015).

  9. 9

    W. Wang, G. Ding, T. Jiang, P. Zhang, T. Wu, and B. Han, Green Chem. 15, 1150 (2013).

  10. 10

    S. I. Niwa, M. Eswaramoorthy, J. Nair, A. Raj, N. Itoh, H. Shoji, T. Namba, and F. Mizukami, Science (Washington, DC, U. S.) 295, 105 (2002).

  11. 11

    Y. Gao, Y. Gao, L. Shi, and Q. Sun, Catal. Lett. 147, 2799 (2017).

  12. 12

    G. Ding, W. Wang, T. Jiang, B. Han, H. Fan, and G. Yang, ChemCatChem 5, 192 (2013).

  13. 13

    R. Dittmeyer and L. Bortolotto, Appl. Catal. A 391, 311 (2011).

  14. 14

    B. Lee, H. Naito, and T. Hibino, Angew. Chem. Int. Ed. 51, 440 (2012).

  15. 15

    K. Ohkubo, A. Fujimoto, and S. Fukuzumi, J. Am. Chem. Soc. 135, 5368 (2013).

  16. 16

    X. Lang, X. Chen, and J. Zhao, Chem. Soc. Rev. 43, 473 (2014).

  17. 17

    Y. W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q. Y. Meng, L. Z. Wu, and C. H. Tung, J. Am. Chem. Soc. 138, 10080 (2016).

  18. 18

    O. Shoji, T. Kunimatsu, N. Kawakami, and Y. Watanabe, Angew. Chem. Int. Ed. 52, 6606 (2013).

  19. 19

    C. Mukarakate, J. D. Mcbrayer, T. J. Evans, S. Budhi, D. J. Robichaud, K. Iisa, J. T. Dam, M. J. Watson, R. M. Baldwin, and M. R. Nimlos, Green Chem. 17, 4217 (2015).

  20. 20

    L. Wang, Y. Yi, C. Wu, H. Guo, and X. Tu, Angew. Chem. Int. Ed. 56, 13679 (2017).

  21. 21

    Y. Yi, R. Zhang, L. Wang, J. Yan, J. Zhang, and H. Guo, ACS Omega 2, 9199 (2017).

  22. 22

    D.-W. Lee, J.-H. Lee, B.-H. Chun, and K.-Y. Lee, Plasma Chem. Plasma Process. 23, 519 (2003).

  23. 23

    H. Sekiguchi, M. Ando, and H. Kojima, J. Phys. D: Appl. Phys. 38, 1722 (2005).

  24. 24

    D. Ascenzi, P. Franceschi, G. Guella, and P. Tosi, J. Phys. Chem. A 110, 7841 (2006).

  25. 25

    Y.-J. Liu, X.-Z. Jiang, and L. Wang, Plasma Chem. Plasma Process. 27, 496 (2007).

  26. 26

    M. Agung, S. Nomura, S. Mukasa, H. Toyota, O. Kazuhiko, and H. Goto, Plasma Sci. Technol. 19, 60 (2017).

Download references


The authors acknowledge the funding from the National Natural Science Foundation of China (nos. 21575112, 21777128, and 21705125).

Author information

Correspondence to Zhiping Zhang.

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei Mi, Han, W., Li, J. et al. Direct Hydroxylation of Benzene to Phenol by Dielectric Barrier Discharge Plasma. Russ. J. Phys. Chem. 93, 2812–2816 (2019) doi:10.1134/S003602441913020X

Download citation


  • benzene hydroxylation
  • phenol
  • electrode
  • dielectric barrier discharge