Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2842–2851 | Cite as

Alcohol-Induced Synthesis of Photocatalytic TiO2 with Controlled Hierarchical Structure

  • Fanming MengEmail author
  • Xingbin Liu
  • Zhenghua Fan
  • Bo Yu
  • Rui Qin
PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • 3 Downloads

Abstract

Three-dimensional (3D) hierarchical TiO2 structures were obtained by a facile solvothermal process. Various analytical techniques were used to characterize the crystal phase, morphology and optical absorption of the obtained samples. The experimental results indicate that the morphology could be tailored by adjusting the volume ratio of glycerol to ethanol. The investigation of photocatalytic performance shows that all the as-prepared TiO2 samples possess an excellent photocatalytic activity superior to commercial P25 in the degradation of Rhodamine B (RhB) dye under UV-light irradiation. In addition, the optimized volume ratio of ethanol to glycerol is 20 : 15. The possible mechanism related to the photocatalytic activity of the sample is discussed in detail. The enhanced photocatalytic activities of TiO2 samples could result from their hierarchical structures assembled by 1D nanorods and large light-harvesting efficiency.

Keywords:

TiO2 hierarchical solvothermal process photocatalytic activity 

Notes

ACKNOWLEDGMENTS

This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).

REFERENCES

  1. 1.
    X. Zhang, P. Zhang, L. Wang, H. Gao, J. Zhao, C. Liang, J. Hu, and G. Shao, Appl. Catal. B: Environ. 192, 17 (2016).CrossRefGoogle Scholar
  2. 2.
    K. Wang, B. S. Liu, B. Cheng, W. K. Ho, and J. G. Yu, Appl. Catal. B: Environ. 176, 44 (2015).CrossRefGoogle Scholar
  3. 3.
    Q. J. Xiang, J. G. Yu, and M. Jaroniec, Chem. Commun. 47, 4532 (2011).CrossRefGoogle Scholar
  4. 4.
    B. Sun, G. Zhou, Y. Zhang, R. Liu, and T. Li, Chem. Eng. J. 264, 125 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, T. Xia, M. Shang, P. Wallenmeyer, D. Katelyn, A. Peterson, J. Murowchick, L. Dong, and X. Chen, RSC Adv. 4, 16146 (2014).Google Scholar
  6. 6.
    Y.-S. P. Won Seok Lee and Yoon-Kyoung Cho, Analyst 140, 616 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Z. He, Q. Cai, H. Fang, G. Situ, J. Qiu, S. Song, and J. Chen, J. Environ. Sci. 25, 2460 (2013).CrossRefGoogle Scholar
  8. 8.
    W. Sun, K. Sun, T. Peng, S. You, H. Liu, L. Liang, S. Guo, and X. Z. Zhao, J. Power Sources 262, 86 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Zhu, S. H. Wang, Z. F. Bian, C. L. Cai, and H. X. Li, Res. Chem. Intermed. 35, 769 (2009).CrossRefGoogle Scholar
  10. 10.
    J. Lei, K. Du, R. Wei, J. Ni, L. Li, and W. Li, RSC Adv. 3, 13843 (2013).Google Scholar
  11. 11.
    M. Ye, D. Zheng, M. Wang, C. Chen, W. Liao, C. Lin, and Z. Lin, ACS Appl. Mater. Interfaces 6, 2893 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. J. Chen, G. Xiao, T. S. Wang, F. Zhang, Y. Ma, P. Gao, C. L. Zhu, E. Zhang, Z. Xu, and Q. H. Li, Sens. Actuators, B 156, 867 (2011).CrossRefGoogle Scholar
  13. 13.
    J. Wang, G. Xu, X. Zhang, P. Zhai, J. Lv, D. Wang, Z. Zheng, and Y. Wu, Appl. Surf. Sci. 363, 644 (2016).CrossRefGoogle Scholar
  14. 14.
    S. Liu, L. Han, Y. Duan, S. Asahina, O. Terasaki, Y. Cao, B. Liu, L. Ma, J. Zhang, and S. Che, Nat. Commun. 3, 1215 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    W. Zhao, H. Wang, X. Feng, Y. Zhang, and S. Zhang, Mater. Lett. 158, 174 (2015).CrossRefGoogle Scholar
  16. 16.
    Z. Wu, Q. Wu, L. Du, C. Jiang, and L. Piao, Particuology 15, 61 (2014).CrossRefGoogle Scholar
  17. 17.
    P. T. Sirachaya Kunjara Na Ayudhya, O. Mekasuwandumrong, and P. P. Varong Pavarajarn, Cryst. Growth Des. 6, 2246 (2006).Google Scholar
  18. 18.
    G. J. Xiao, Y. N. Wang, Y. M. Sui, J. J. Ning, Z. Y. Liu, B. L. Tian, G. T. Zou, and B. Zou, RSC Adv. 2, 234 (2012).Google Scholar
  19. 19.
    R. Jin, G. Chen, Q. Wang, J. Sun, and Y. Wang, J. Mater. Chem. 21, 6628 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Chen, Y. Xie, J. Lu, Y. Xiong, S. Zhang, Y. Qian, and X. Liu, J. Mater. Chem. 12, 748 (2002).CrossRefGoogle Scholar
  21. 21.
    K. Ahn, D. Pham-Cong, H. S. Choi, S. Y. Jeong, J. H. Cho, J. Kim, J. P. Kim, J. S. Bae, and C.-R. Cho, Curr. Appl. Phys. 16, 251 (2016).CrossRefGoogle Scholar
  22. 22.
    F. M. Meng, L. N. Wang, and J. B. Cui, J. Alloys Compd. 556, 102 (2013).CrossRefGoogle Scholar
  23. 23.
    Z. Sun, J. H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y. M. Kang, and S. X. Dou, J. Am. Chem. Soc. 133, 19314 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Z. H. Fan, F. M. Meng, M. Zhang, Z. Y. Wu, Z. Q. Sun, and A. X. Li, Appl. Surf. Sci. 360, 298 (2016).CrossRefGoogle Scholar
  25. 25.
    Y.-W. Z. Rui Si, Li-Ping You, and Chun-Hua Yan, J. Phys. Chem. B 110, 5994 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    L. Sun, Z. Zhao, Y. Zhou, and L. Liu, Nanoscale 4, 613 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J. Yan, G. Wu, N. Guan, L. Li, Z. Li, and X. Cao, Phys. Chem. Chem. Phys. 15, 10978 (2013).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    F. D. Hardcastle, H. Ishihara, R. Sharma, and A. S. Biris, J. Mater. Chem. 21, 6337 (2011).CrossRefGoogle Scholar
  29. 29.
    H. C. Choi, Y. M. Jung, and S. B. Kim, Vibr. Spectrosc. 37, 33 (2005).CrossRefGoogle Scholar
  30. 30.
    M. Hron, C. F. Schwerdtfeger, and E. P. Meagher, Z. Kristallogr. 136, 273 (1972).CrossRefGoogle Scholar
  31. 31.
    H. Song, S. You, T. Chen, and X. Jia, J. Mater. Sci. Mater. Electron. 26, 8442 (2015).CrossRefGoogle Scholar
  32. 32.
    T. Wang, S. S. Zhao, B. Lin, C. Xue, G. D. Yang, S. J. Ding, C. S. Ma, G. Yang, and G. R. Yang, J. Mater. Chem. A 2, 15611 (2014).CrossRefGoogle Scholar
  33. 33.
    K. L. Yeung, S. T. Yau, A. J. Maira, J. M. Coronado, J. Soria, and P. L. Yue, J. Catal. 219, 107 (2003).CrossRefGoogle Scholar
  34. 34.
    M. Nag, P. Basak, and S. V. Manorama, Mater. Res. Bull. 42, 1691 (2007).CrossRefGoogle Scholar
  35. 35.
    G. Tian, Y. Chen, W. Zhou, K. Pan, C. Tian, X.‑R. Huang, and H. Fu, Cryst. Eng. Commun 13, 2994 (2011).CrossRefGoogle Scholar
  36. 36.
    P. B. Patil, S. S. Mali, V. V. Kondalkar, N. B. Pawar, K. V. Khot, Ch. K. Hong, P. S. Patil, and P. N. Bhosale, RSC Adv. 4, 47278 (2014).Google Scholar
  37. 37.
    X. Liu, Y. Li, D. Deng, N. Chen, X. Xing, and Y. Wang, Cryst. Eng. Commun. 18, 1964 (2016).CrossRefGoogle Scholar
  38. 38.
    V. V. Kondalkar, S. S. Mali, N. B. Pawar, R. M. Mane, S. Choudhury, C. K. Hong, P. S. Patil, S. R. Patil, P. N. Bhosale, and J. H. Kim, Electrochim. Acta 143, 89 (2014).CrossRefGoogle Scholar
  39. 39.
    K. A. Bogle, M. N. Bachhav, M. S. Deo, N. Valanoor, and S. B. Ogale, Appl. Phys. Lett. 95, 203502 (2009).CrossRefGoogle Scholar
  40. 40.
    H. Yoo, M. Kim, C. Bae, S. Lee, H. Kim, T. K. Ahn, and H. Shin, J. Phys. Chem. C 118, 9726 (2014).CrossRefGoogle Scholar
  41. 41.
    Y. C. Zhang, J. Li, and H. Y. Xu, Appl. Catal. B: Environ. 123, 18 (2012).CrossRefGoogle Scholar
  42. 42.
    H. F. Guohui Tian, Liqiang Jing, Baifu Xin, and Kai Pan, J. Phys. Chem. C 112, 3083 (2008).CrossRefGoogle Scholar
  43. 43.
    G. Li, J. Liu, J. Lan, G. Li, Q. Chen, and G. Jiang, Cryst. Eng. Commun. 16, 10547 (2014).CrossRefGoogle Scholar
  44. 44.
    H. Zhang, G. Du, W. Lu, L. Cheng, X. Zhu, and Z. Jiao, Cryst. Eng. Commun. 14, 3793 (2012).CrossRefGoogle Scholar
  45. 45.
    L. Zhang, Y. Li, Q. Zhang, and H. Wang, Cryst. Eng. Commun. 15, 5986 (2013).CrossRefGoogle Scholar
  46. 46.
    Z. Li, R. Liu, and Y. Xu, J. Phys. Chem. C 117, 24360 (2013).CrossRefGoogle Scholar
  47. 47.
    J. Preclíková, P. Galář, F. e. Trojánek, S. Daniš, B. Rezek, I. Gregora, Y. Němcová, and P. Malý, J. Appl. Phys. 108, 113502 (2010).CrossRefGoogle Scholar
  48. 48.
    M. A. H. a. P. Guyot-Sionnest, J. Phys. Chem. B 100, 468 (1996).CrossRefGoogle Scholar
  49. 49.
    C.-C. W. Zh. Zhang, R. Zakaria, and J. Y. Ying, J. Phys. Chem. B 102, 10871 (1998).CrossRefGoogle Scholar
  50. 50.
    J. Yu and L. Shi, J. Mol. Catal. A: Chem. 326, 8 (2010).CrossRefGoogle Scholar
  51. 51.
    X. W. Cheng, Q. H. Chen, J. J. Li, and P. Wang, Electrochim. Acta 108, 203 (2013).CrossRefGoogle Scholar
  52. 52.
    F. B. Li, Chemosphere 48, 1103 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Fanming Meng
    • 1
    • 2
    Email author
  • Xingbin Liu
    • 1
  • Zhenghua Fan
    • 1
  • Bo Yu
    • 1
  • Rui Qin
    • 1
  1. 1.School of Physics and Materials Science, Anhui UniversityHefeiChina
  2. 2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of EducationDalianChina

Personalised recommendations