Advertisement

Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2635–2644 | Cite as

Volumetric Properties of Amino Acids in Aqueous Solutions of Glucosamine Hydrochloride at T = 293.15–313.15 K

  • Dan LiEmail author
  • Meng Guo
  • Xiangjun Kong
  • Guangjian Dai
  • Shutong Lin
PHYSICAL CHEMISTRY OF SOLUTIONS
  • 7 Downloads

Abstract

The densities (ρ) of glycine, L-alanine, L-serine, and L-threonine solutions in 0.05, 0.10, 0.15, 0.20, and 0.30 mol kg–1 aqueous solutions of D-glucosamine hydrochloride have been measured at T = 293.15, 298.15, 303.15, 308.15, and 313.15 K. The apparent molar volumes (Vϕ), limiting partial molar volumes (\(V_{\phi }^{0}\)) of the amino acids have been calculated from the density data. Transfer partial molar volumes (∆tr\(V_{\phi }^{0}\)) and hydration numbers from water to the aqueous solutions of D-glucosamine hydrochloride were also obtained. These parameters of volumetric properties can help to understand the mixing effects and interactions between amino acids and D-glucosamine hydrochloride aqueous solution.

Keywords:

glucosamine amino acid density apparent molar volume hydration number 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the Natural Science Foundation of Shandong Province (ZR2016BQ40).

REFERENCES

  1. 1.
    T. S. Banpial, K. Singh, and P. K. Banipal, J. Solut. Chem. 36, 1635 (2007).CrossRefGoogle Scholar
  2. 2.
    N. G. Harutyunyan, L. R. Harutyunyan, and R. S. Harutyunyan, Thermochim. Acta 498, 124 (2010).CrossRefGoogle Scholar
  3. 3.
    R. Badarayani and A. Kumar, J. Chem. Eng. Data 48, 664 (2003).CrossRefGoogle Scholar
  4. 4.
    T. S. Banipal, J. Kaur, P. K. Banipal, A. K. Sood, and K. Singh, J. Chem. Eng. Data 56, 2751 (2011).CrossRefGoogle Scholar
  5. 5.
    Q. Yuan, Z. F. Li, and B. H. Wang, J. Chem. Thermodyn. 38, 20 (2006).CrossRefGoogle Scholar
  6. 6.
    A. A. Zamyatnin, Biophys. Bioeng. 13, 145 (1984).CrossRefGoogle Scholar
  7. 7.
    T. V. Chalikian and R. Annu, Biophys. Biomol. Struct. 32, 207 (2003).CrossRefGoogle Scholar
  8. 8.
    N. V. Sastry, P. H. Valand, and P. M. Macwan, J. Chem. Eng. Data 56, 627 (2011).CrossRefGoogle Scholar
  9. 9.
    M. S. Santosh, D. K. Bhat, and A. S. Bhatt, J. Chem. Eng. Data 56, 768 (2011).CrossRefGoogle Scholar
  10. 10.
    S. Roy, A. Hossain, K. Mahali, and B. K. Dolui, Russ. J. Phys. Chem. 89, 2111 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Y. Reginster, R. Deroisy, L. C. Rovati, R. L. Lee, E. Lejeune, O. Bruyere, G. Giacovelli, Y. Henrotin, J. E. Dacre, and C. Gossett, Lancet 357, 251 (2001).CrossRefGoogle Scholar
  12. 12.
    F. Zahedipour, R. Dalirfardouei, G. Karimi, and K. Jamialahmadi, Biomed. Pharmacother. 95, 1051 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. Tamai, K. Miyatake, Y. Okamoto, Y. Takamori, H. Sakamoto, and S. Minami, Carbohydr. Polym. 48, 369 (2002).CrossRefGoogle Scholar
  14. 14.
    R. Xing, S. Liu, Z. Guo, H. Yu, C. Li, X. Ji, J. Feng, and P. Li, Bioorg. Med. Chem. 14, 1706 (2006).CrossRefGoogle Scholar
  15. 15.
    S. Fang and D. H. Ren, J. Chem. Eng. Data 58, 845 (2013).CrossRefGoogle Scholar
  16. 16.
    M. J. Iqbal and M. A. Chaudhry, J. Chem. Eng. Data 54, 2772 (2009).CrossRefGoogle Scholar
  17. 17.
    X. Wang, G. Q. Li, Y. H. Guo, Q. Zheng, W. J. Fang, P. F. Bian, and L. J. Zhang, J. Chem. Thermodyn. 78, 128 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Chen, R. Fu, J. Xu, W. Du, X. Wang, and W. Fang, J. Chem. Thermodyn. 113, 388 (2017).CrossRefGoogle Scholar
  19. 19.
    J. M. Moses, S. S. Dhondge, L. J. Paliwal, S. P. Zodape, and P. H. Shende, J. Chem. Thermodyn. 93, 8 (2016).CrossRefGoogle Scholar
  20. 20.
    M. J. Iqbal and M. A. Chaudhry, J. Chem. Eng. Data 54, 2772 (2009).CrossRefGoogle Scholar
  21. 21.
    S. Terasawa, H. Itsuki, and S. Arakawa, J. Phys. Chem. 79, 2345 (1975).CrossRefGoogle Scholar
  22. 22.
    J. Zhang, T. Fu, C. Zhu, and Y. Ma, J. Mol. Liq. 242, 190 (2017).CrossRefGoogle Scholar
  23. 23.
    R. W. Gurney, Ionic Process in Solution (McGraw Hill, New York, 1953).Google Scholar
  24. 24.
    H. S. Franks and E. W. Evans, J. Chem. Phys. 13, 507 (1945).CrossRefGoogle Scholar
  25. 25.
    T. S. Banipal, G. Singh, and B. S. Lark, J. Solution Chem. 30, 657 (2001).CrossRefGoogle Scholar
  26. 26.
    H. Xie, L. Zhao, C. Liu, Y. Cao, X. Lu, Q. Lei, and W. Fang, J. Chem. Thermodyn. 99, 75 (2016).CrossRefGoogle Scholar
  27. 27.
    F. J. Millero, L. S. Antonio, and S. Charles, J. Phys. Chem. 82, 784 (1978).CrossRefGoogle Scholar
  28. 28.
    E. Berlin and M. J. Pallansch, J. Phys. Chem. 72, 1887 (1968).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Dan Li
    • 1
    Email author
  • Meng Guo
    • 1
  • Xiangjun Kong
    • 1
  • Guangjian Dai
    • 1
  • Shutong Lin
    • 1
  1. 1.Department of Chemistry and Chemical Engineering, Weifang UniversityWeifangChina

Personalised recommendations