Advertisement

Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism

  • 2 Accesses

Abstract

The photocatalytic degradation of rifampicin antibiotic in aqueous solution under solar irradiation is investigated using ZnO as photocatalyst. The effect of experimental parameters such as ZnO load, initial rifampicin concentration, pH and the presence of salts (NaCl, NaHCO3, and Na2SO4) is studied. The kinetic study using the Langmuir-Hinshelwood model is also reported. A photocatalytic degradation mechanism is proposed.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    E. Stumm-Zollinger and G. M. Fair, J. Water Pollut. Cont. Fed. 37, 1506 (1965).

  2. 2

    H. H. Tabak and R. L. Bunch, Dev. Ind. Microbiol. 11, 376 (1970).

  3. 3

    J. Ternes, T. A. Kreckel, and P. Mueller, Sci. Total Environ. 225, 99 (1999).

  4. 4

    J. D. Cahill, E. T. Furlong, M. R. Burkhardt, D. Kolpin, and L. G. Anderson, J. Chromatogr. A 1041, 180 (2004).

  5. 5

    S. D. Kim, J. Cho, I. S. Kim, B. J. Vanderford, and S. A. Snyder, Water Res. 41, 1013 (2007).

  6. 6

    F. Sacher, M. Ehmann, S. Gabriel, C. Graf, and H.‑J. Brauch, J. Environ. Monit. 10, 664 (2008).

  7. 7

    K. Petit and R. Teysseire, Synthesis of Knowledge on the Presence of Medicinal Substances in Aquatic Environments.France and Some Countries (2013) [in French].

  8. 8

    Y. Zhang, C. F. Marrs, C. Simon, and C. Xi, Sci. Total Environ. 407, 3702 (2009).

  9. 9

    N. M. Vieno, H. Härkki, T. Tuhkanen, and L. Kronberg, Environ. Sci. Technol. 41, 5077 (2007).

  10. 10

    D. Nasuhoglu, D. Berk, and V. Yargeau, Chem. Eng. J. 185–186, 52 (2012).

  11. 11

    A. Mendoza, M. López de Alda, S. González-Alonso, N. Mastroianni, D. Barceló, and Y. Valcárcel, Chemosphere 95, 255 (2014).

  12. 12

    Y. Vystavna et al., Water. Air. Soil Pollut. 223, 2111 (2012).

  13. 13

    C. Bojer, J. Schöbel, T. Martin, M. Ertl, H. Schmalz, and J. Breu, Appl. Catal. B: Environ. 204, 565 (2017).

  14. 14

    J. P. Besse, C. Kausch-Barreto, and J. Garric, Hum. Ecol. Risk Assess 14, 665 (2008).

  15. 15

    Y. Kaya et al., Chem. Eng. J. 322, 301 (2017).

  16. 16

    S. Foteinis, J. M. Monteagudo, A. Durán, and E. Chatzisymeon, Sci. Total Environ. 612, 612 (2018).

  17. 17

    H. Dong, Z. Qiang, J. Lian, and J. Qu, Water Res. 119, 90 (2017).

  18. 18

    I. Kim, N. Yamashita, and H. Tanaka, J. Hazard. Mater. 166, 1140 (2009).

  19. 19

    L. Rizzo, S. Meric, M. Guida, D. Kassinos, and V. Belgiorno, Water Res. 43, 4070 (2009).

  20. 20

    A. Kaur, A. Umar, and S. K. Kansal, Appl. Catal. A: Gen. 510, 155 (2016).

  21. 21

    S. Salaeh et al., Chem. Eng. J. 304, 302 (2016).

  22. 22

    S. Kim et al., J. Hazard. Mater. 336, 32 (2017).

  23. 23

    L. Wang et al., Chem. Eng. J. 330, 634 (2017).

  24. 24

    K. Gairaa and Y. Bakelli, J. Renewable Energy. 11 (2013).

  25. 25

    J. Perriot, É. Chambonnet, and A. Eschalier, Rev. Mal. Respir. 28, 542 (2011).

  26. 26

    P. S. Kaniou, K. Pitarakis, and I. Barlagianni, Chemosphere 60, 372 (2005).

  27. 27

    A. Douayar et al., Eur. Phys. J. Appl. Phys. 61, 10304 (2013).

  28. 28

    W. Zheng, R. Ding, X. Yan, and G. He, Mater. Lett. 201, 88 (2017).

  29. 29

    Youji Li, Shuguo Sun, Mingyuan Ma, Yuzhu Ouyang, and Wenbin Yan, Chem. Eng. J. 142, 147 (2008).

  30. 30

    G. V. Morales, E. L. Sham, R. Cornejo, and E. M. Farfan Torres, Latin Am. Appl. Res. 42, 45 (2012)

  31. 31

    M. Ahmad et al., J. Rare Earths 33, 255 (2015).

  32. 32

    E. S. Elmolla and M. Chaudhuri, Desalination 252, 52 (2010).

  33. 33

    N. L. Finčur et al., Chem. Eng. J. 307, 1115 (2017).

  34. 34

    D. M. Calandra, D. di Mauro, F. Cutugno, and S. di Martino, CEUR Workshop Proc. 1621, 43 (2016).

  35. 35

    N. Barka and A. Assabbane, Phys. Chem. 41, 85 (2008).

  36. 36

    T. Mcmahon, P. C. M. van Zijl, and A. A. Gilad, NIH Public Access 27, 320 (2011).

  37. 37

    S. Ai, J. Li, Y. Yang, M. Gao, Z. Pan, and L. Jin, Anal. Chim. Acta 509, 237 (2004).

  38. 38

    T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, and J. Dai, Nanoscale Res. Lett. 9, 327 (2014).

Download references

Author information

Correspondence to H. Kais.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kais, H., Mezenner, N.Y., Trari, M. et al. Photocatalytic Degradation of Rifampicin: Influencing Parameters and Mechanism. Russ. J. Phys. Chem. 93, 2834–2841 (2019). https://doi.org/10.1134/S0036024419130119

Download citation

Keywords:

  • photocatalytic degradation
  • solar irradiation
  • zinc oxide
  • rifampicin
  • degradation mechanism