IR Manifestation of Non-Covalent Interaction in Organic Liquids


In this paper the IR manifestation of non-covalent interactions in benzene, methyl iodide and acetonitrile is considered. It was shown that the molecules of the mentioned compounds can form cluster shapes not only in condensed state, but also in gas phase. These structures appear due to the hydrogen bond or owing to the interaction between negatively charged atom (iodine atom) or fragment (CN-group) with a carbon atom of a neighboring molecule. As a result, the molecular chains arise, leading to the high stability of condensed state along with the dipole-dipole interaction.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1

    A. Gavezzotti, Molecular Aggregation: Structure Analysis and Molecular Simulation of Crystals and Liquids (Oxford Univ. Press, Oxford, 2009).

  2. 2

    I. Z. Fisher, Statistical Theory of Liquids (Chicago Univ. Press, Chicago, 1964).

  3. 3

    P. Jedlovszky, J. Chem. Phys. 107, 562 (1997).

  4. 4

    V. I. Bakhmutov, Dihydrogen Bonds (Wiley, Chichester, 2008).

  5. 5

    T. W. G. Solomons and C. B. Fryle, Organic Chemistry, 9th ed. (Wiley, New York, 2008).

  6. 6

    A. Karpfen, A. C. Legon, W. T. Pennington, et al., in Halogen Bonding: Fundamentals and Applications, Ed. by P. Metrangolo and G. Resnati (Springer, Berlin, 2008).

  7. 7

    M. B. Smith and J. March, March’s Advanced Organic Chemistry, Reactions, Mechanism, and Structure, 6th ed. (Wiley, N. Jersey, 2007).

  8. 8

    J. R. Partington, Advanced Treatise on Physical Chemistry, Vol. 5: Molecular Spectra and Structure. Dielectrics and Dipole Moments (Longmans, Green and Co, London, 1954).

  9. 9

    J. Teixeira, M.-C. Bellissent-Funel, and S.-H. Chen, J. Mol. Liq. 48, 111 (1991).

  10. 10

    P. Georgiou, J. Vincent, M. Andersson, A. B. Wöhri, P. Gourdon, J. Poulsen, J. Davidsson, and R. Neutze, J. Chem. Phys. 124, 234507 (2006).

  11. 11

    S. Bálint, I. Bakó, T. Grósz, and T. Megyes, J. Mol. Liq. 136, 257 (2007).

  12. 12

    P. Hobza, Ann. Rep. Progr. Chem. 100, 3 (2004).

  13. 13

    T. Megyes, S. Bálint, T. Grósz, T. Radnai, and I. Bakó, J. Chem. Phys. 126, 164507 (2007).

  14. 14

    S. Hayaki, H. Sato, and S. Sakaki, J. Mol. Liq. 147, 9 (1991).

  15. 15

    T. Megyes, S. Bálint, T. Grósz, T. Radnai, and I. Bakó, J. Chem. Phys. 126, 164507 (2007).

  16. 16

    I. Yu. Kalagaev and I. I. Greenwald, Pure Appl. Chem. 85, 135 (2013).

  17. 17

    I. I. Grinvald, G. A. Domrachev, and I. Yu. Kalagaev, Dokl. Phys. Chem. 440, 168 (2011).

  18. 18

    I. I. Grinvald, I. Yu. Kalagaev, A. N. Petukhov, A. I. Grushevskaya, and R. V. Kapustin, J. Struct. Chem. 59, 326 (2018).

  19. 19

    Y. Ch. Park and J. Sh. Lee, J. Phys. Chem. A 110, 5091 (2006).

Download references

Author information

Correspondence to I. I. Grinvald.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grinvald, I.I., Kalagaev, I.Y., Petukhov, A.N. et al. IR Manifestation of Non-Covalent Interaction in Organic Liquids. Russ. J. Phys. Chem. 93, 2645–2649 (2019).

Download citation


  • benzene
  • methyl iodide
  • acetonitrile
  • IR spectroscopy
  • non-covalent interaction