Russian Journal of Physical Chemistry A

, Volume 93, Issue 13, pp 2765–2770 | Cite as

Insight into the Interaction between Selected Antitumor Gold(III) Complexes and Citrate Stabilized Gold Nanoparticles

  • A. M. BondžićEmail author
  • A. V. Vujačić Nikezić
  • U. Klekotka
  • M. M. Marković
  • V. V. Vodnik
  • B. Kalska
  • V. M. VasićEmail author


This paper presents the study of the interaction between gold nanoparticles (AuNPs) and antitumor gold complexes, [Au(OH)2(bipy)][PF6], [Au(CH3COO)2(pydmb-H)], and [Au(bipydmb-H)(OH)][PF6], in order to estimate the possibility for metal complex tracking in cells using nanospectroscopy approach. Decrease of intensity of the surface plasmon absorption band at 524 nm and the appearance of a new broad band at ∼640 nm, followed by their red shift were observed in the presence of the complexes. TEM images showed that the average size and shape of AuNPs did not change after the addition of gold complexes. DLS and zeta potential measurements pointed out to the metal complex adsorption on the surface of AuNPs followed by flocculation process. In addition, kinetic studies indicated strong bond formation between these complexes and AuNPs. Accordingly, AuNPs/complex conjugates have the potential to be applied for the tracking of these metal complexes in the cells using nanospectroscopy approach.


antitumor gold complexes AuNPs TEM DLS zeta potential 



Authors would like to thank professor Luigi Messori from the Department of Chemistry, University of Florence for giving the gold complexes used in this work.

This work was supported by the Ministry for Science of the Republic of Serbia (grant no. 172023) and COST action MP1302 “Nanospectroscopy.” The work was partially financed by EU founds via project with contract number POPW.01.03.00-20-034/09-00.


  1. 1.
    A. N. Shipway, E. Katz, and I. Willner, Chem. Phys. Chem. 1, 18 (2000).CrossRefGoogle Scholar
  2. 2.
    K. C. Grabar, R. Griffith Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem. 67, 735 (1995).CrossRefGoogle Scholar
  3. 3.
    Y. Yang, S. Matsubara, M. Nogami, J. Shi, and W. Huang, Nanotechnology 17, 2821 (2006).CrossRefGoogle Scholar
  4. 4.
    E. Katz and I. Willner, Angew. Chem. 43, 6042 (2004).CrossRefGoogle Scholar
  5. 5.
    K. Saha, S. S. Agasti, C. Kim, X. N. Li, and V. M. Rotello, Chem. Rev. 112, 2739 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Linnert, P. Mulvaney, and A. Henglein, J. Phys. Chem. 97, 679 (1993).CrossRefGoogle Scholar
  7. 7.
    F. Strelow, A. Fojtik, and A. Henglein, J. Phys. Chem. 98, 3032 (1994).CrossRefGoogle Scholar
  8. 8.
    K. George Thomas, J. Zajicek, and P. V. Kamat, Langmuir 18, 3722 (2002).CrossRefGoogle Scholar
  9. 9.
    C. S. Weisbecker, M. V. Merritt, and G. M. Whitesides, Langmuir 12, 3763 (1996).CrossRefGoogle Scholar
  10. 10.
    S. Rana, A. Bajaj, R. Mout, and V. M. Rotello, Adv. Drug Deliv. Rev. 64, 200 (2012).CrossRefGoogle Scholar
  11. 11.
    F.-Y. Kong, J.-W. Zhang, R.-F. Li, Z.-X. Wang, W.‑J. Wang, and W. Wang, Molecules 22, 1445 (2017).CrossRefGoogle Scholar
  12. 12.
    D. I. Gittins, D. Bethell, D. J. Schiffrin, and R. J. Nichols, Nature (London, U. K.) 408, 67 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Graetzel, Acc. Chem. Res. 14, 376 (1981).CrossRefGoogle Scholar
  14. 14.
    S. Welter, K. Brunner, J. W. Hofstraat, and L. D. Cola, Nature (London, U. K.) 421, 54 (2003).CrossRefGoogle Scholar
  15. 15.
    R. F. Khairutdinov and J. K. Hurst, Nature (London, U. K.) 402, 509 (1999).CrossRefGoogle Scholar
  16. 16.
    J. Schnadt, P. A. Brühwiler, L. Patthey, J. N. O’Shea, S. Södergren, M. Odelius, R. Ahuja, O. Karis, M. Bässler, P. Persson, H. Siegbahn, S. Lunell, and N. Martensson, Nature (London, U. K.) 418, 620 (2002).CrossRefGoogle Scholar
  17. 17.
    H. E. Toma, V. M. Zamarion, S. H. Toma, and K. Araki, J. Braz. Chem. Soc. 21, 1158 (2010).CrossRefGoogle Scholar
  18. 18.
    A. Bindolia, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini, and L. Messori, Coord. Chem. Rev. 253, 1692 (2009).CrossRefGoogle Scholar
  19. 19.
    A. M. Bondžić, G. V. Janjić, M. D. Dramićanin, L. Messori, L. Massai, T. N. Parac Vogt, and V. M. Vasić, Metallomics 9, 292 (2017).CrossRefGoogle Scholar
  20. 20.
    A. M. Bondžić, M. B. Čolović, G. V. Janjić, B. Zarić, S. Petrović, D. Z. Krstić, T. Marzo, L. Messori, and V. M. Vasić, J Biol. Inorg. Chem. 22, 819 (2017).CrossRefGoogle Scholar
  21. 21.
    A. Vujačić, V. Vasić, M. Dramićanin, S. P. Sovilj, N. Bibić, S. Milonjić, and V. Vodnik, J. Phys. Chem. C 117, 6567 (2013).CrossRefGoogle Scholar
  22. 22.
    J. Turkevich, P. C. Stevenson, and J. Hillier, Faraday Soc. 11, 55 (1951).CrossRefGoogle Scholar
  23. 23.
    R. Schmid and V. N. Sapunov, Nonformal Kinetics (Verlag Chemie, Weinheim, 1982).Google Scholar
  24. 24.
    M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
  25. 25.
    V. Chegel, O. Rachkov, A. Lopatynskyi, S. Ishihara, I. Yanchuk, Y. Nemoto, J. P. Hill, and K. Ariga, J. Phys. Chem. C 116, 2683 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. M. Bondžić
    • 1
    Email author
  • A. V. Vujačić Nikezić
    • 1
  • U. Klekotka
    • 2
  • M. M. Marković
    • 1
  • V. V. Vodnik
    • 1
  • B. Kalska
    • 2
  • V. M. Vasić
    • 1
    Email author
  1. 1.Vinča Institute of Nuclear Sciences, University of BelgradeBelgradeSerbia
  2. 2.Institute of Chemistry, University of BialystokBialystokPoland

Personalised recommendations